5-8
23.
24.
25.
26.
27.
28.
29.

30.
31

32.

33.

34.

35.

36.

37.

38.

39.
40.
41.
42.

QUESTIONS AND PROBLEMS 151

When 16-bit numbers are divided, in which register is the quotient found?

What errors are detected during a division?

Explain the difference between the IDIV and DIV instructions.

Where is the remainder found after an 8-bit division?

Write a short sequence of instructions that divides the number in BL by the number in CL, and then multiplies
the result by 2. The final answer must be a 16-bit number stored in the DX register.

Which instructions are used with BCD arithmetic operations?

Which instructions are used with ASCII arithmetic operations?

Explain how the AAM instruction converts from binary to BCD.

Develop a sequence of instructions that converts the unsigned number in AX (values of 0-65535) into a 5-
digit BCD number stored in memory, beginning at the location addressed by the BX register in the data seg-
ment. Note that the most-significant character is stored first and no attempt is made to blank leading zeros.
Develop a sequence of instructions that adds the 8-digit BCD number in AX and BX to the 8-digit BCD
number in CX and DX. (AX and CX are the most-significant registers. The result must be found in CX and
DX after the addition.)

Select an AND instruction that will:

(a) AND BX with DX and save the result in BX

(b) AND OEAH with DH

(c) AND DI with BP and save the result in DI

(d) AND the data addressed by BP with CX and save the result in memory

(e) AND the data stored in four words before the location addressed by SI with DX and save the result in DX
(f) AND AL with memory location WHAT and save the result at location WHAT

Develop a short sequence of instructions that clears (0) the three leftmost bits of DH without changing the re-
mainder DH and stores the result in BH.

Select an OR instruction that will:

(a) OR BL with AH and save the result in AH

(b) OR 88H with ECX

(c) OR DX with SI and save the result in SI

(d) OR 1122H with BP

(e) OR the data addressed by BX with CX and save the result in memory

(f) OR the data stored 40 bytes after the location addressed by BP with AL and save the result in AL

(g) OR AH with memory location WHEN and save the result in WHEN

Develop a short sequence of instructions that sets (1) the rightmost five bits of DI without changing the re-
maining bits of DI. Save the results in SI.

Select the XOR instruction that will:

(a) XOR BH with AH and save the result in AH

(b) XOR 99H with CL

(c) XOR DX with DI and save the result in DX

(d) XOR the data stored 30 words after the location addressed by BP with DI and save the result in DI

(e) XOR DI with memory location WELL and save the result in DI

Develop a sequence of instructions that sets (1) the rightmost four bits of AX; clears (0) the leftmost three bits
of AX; and inverts bits 7, 8, and 9 of AX.

Describe the difference between the AND and TEST instructions.

Select an instruction that tests bit position 2 of register CH.

What is the difference between the NOT and the NEG instruction?

Select the correct instruction to perform each of the following tasks:

(a) shift DI right three places, with zeros moved into the leftmost bit

152 CHAPTER5 ARITHMETIC AND LOGIC INSTRUCTIONS

43.
. For string instructions, DI always addresses data in the segment.
45.
46.
47.
48.
49.

50.

(b) move all bits in AL left one place, making sure that a 0 moves into the rightmost bit position

(c) rotate all the bits of AL left three places

(d) move the DH register right one place, making sure that the sign of the result is the same as the sign of the
original number

What does the SCASB instruction accomplish?

What is the purpose of the D flag bit?

Explain what the REPE prefix does when coupled with the SCASB instruction.

What condition or conditions will terminate the repeated string instruction REPNE SCASB?

Describe what the CMPSB instruction accomplishes.

Develop a sequence of instructions that scans through a 300H-byte section of memory called LIST, located in
the data segment searching for a 66H.

What happens if AH = 02H and DL = 43H when the INT 21H instruction is executed?

CHAPTER 6
Program Control Instructions

INTRODUCTION

The program control instructions direct the flow of a program and allow the flow to change.

A change in flow often occurs after a decision, made with the CMP or TEST instruction, is followed by a condi-
tional jump instruction. This chapter explains the program control instructions, including the jumps, calls,
returns, interrupts, and machine control instructions.

Also presented in this chapter are the relational assembly language statements (.IF, .ELSE, .ELSEIF,
.ENDIF, .WHILE, .ENDW, .REPEAT, and .UNTIL) that are available in version 6.X and above of MASM or
TASM, with version 5.X set for MASM compatibility. These relational assembly language commands allow the
programmer to develop control flow portions of the program with C/C++ language efficiency.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

. Use both conditional and unconditional jump instructions to control the flow of a program.

. Use the relational assembly language statements .IF, REPEAT, .WHILE, and so forth in programs.
. Use the call and return instructions to include procedures in the program structure.

. Explain the operation of the interrupts and interrupt control instructions.

Use machine control instructions to modify the flag bits.

DN AW =

6-1 THE JUMP GROUP

The main program control instruction, jump (JMP), allows the programmer to skip sections of a program and
branch to any part of the memory for the next instruction. A conditional jump instruction allows the programmer
to make decisions based upon numerical tests. The results of numerical tests are held in the flag bits, which are
then tested by conditional jump instructions. Another instruction similar to the conditional jump, the conditional
set, is explained with the conditional jump instructions in this section.

153

154 CHAPTER6 PROGRAM CONTROL INSTRUCTIONS

Opcode
(a) E B Disp
Opcode
Disp Disp
(b) E9 Low High
Opcode
P P CS CS
) EA Low High Low High

FIGURE 6-1 The three main forms of the JMP instruction. Note that
Disp is either an 8- or 16-bit signed displacement or distance.

In this section of the text, all jump instructions are illustrated with their uses in sample programs. Also revisited
are the LOOP and conditional LOOP instructions, first presented in Chapter 3, because they are also forms of the jump
instruction.

Unconditional Jump (JMP)

Three types of unconditional jump instructions (sec Figure 6-1) are available to the microprocessor: short jump,
near jump, and far jump. The short jump is a two-byte instruction that allows jumps or branches to memory
locations within +127 and —128 bytes from the address following the jump. The three-byte near jump allows a
branch or jump within 32K bytes (or anywhere in the current code segment) from the instruction in the current
code segment. Remember that segments are cyclic in nature, which means that one location above offset address
FFEFH is offset address 0000H. For this reason, if you jump two bytes ahead in memory and the instruction
pointer addresses offset address FFFFH, the flow continues at offset address 0001H. Thus, a displacement of
+32K bytes allows a jump to any location within the current code segment. Finally, the five-byte far jump allows
a jump to any memory location within the real memory system. The short and near jumps are often called
intrasegment jumps, and the far jumps are often called intersegment jumps.

In the 80386 through the Pentium 4 processors, the near jump is within +2G if the machine is operated in the
protected mode, with a code segment that is 4G bytes long. If operated in the real mode, the near jump is within
+32K bytes. In the protected mode, the 80386 and above use a 32-bit displacement that is not shown in Figure 6-1.

Short Jump. Short jumps are called relative jumps because they can be moved, along with their related soft-
ware, to any location in the current code segment without a change. This is because the jump address is not stored
with the opcode. Instead of a jump address, a distance, or displacement, follows the opcode. The short jump dis-
placement is a distance represented by a one-byte signed number whose value ranges between +127 and -128. The
short jump instruction appears in Figure 6-2. When the microprocessor executes a short jump, the displacement is
sign-extended and added to the instruction pointer (IP/EIP) to generate the jump address within the current code
segment. The short jump instruction branches to this new address for the next instruction in the program.
Example 6-1 shows how short jump instructions pass control from one part of the program to another. It
also illustrates the use of a label (a symbolic name for a memory address) with the jump instruction. Notice how
one jump (JMP SHORT NEXT) uses the SHORT directive to force a short jump, while the other does not. Most
assembler programs choose the best form of the jump instruction so the second jump instruction (JMP START)
also assembles as a short jump. If the address of the next instruction (0009H) is added to the sign-extended dis-

6-1 THE JUMP GROUP 155

placement (0017H) of the first jump, the address of

. . Memory
NEXT is at location 0017H + 0009H or 0020H.

EXAMPLE 6-1 1000A
0000 33 DB XOR BX, BX 10009
0002 B8 0001 START: MOV AX,1 10008
0005 03 C3 ADD AX,BX 10007
0007 EB 17 JMP SHORT NEXT
10006 | (Jump to here)
0020 8B D8 NEXT : MOV BX,AX
0022 EB DE JMP START 10005
10004
N : 10003 CS = 1000H
Whenever a jump instruction references an ad- IP = 0002H
dress, a label normally identifies the address. The JMP 10002 New IP=IP + 4
NEXT instruction is an example; it jumps to label NEXT 10001 04 New IP = 0006H
for the next instruction. It is very rare to ever use an ac- 10000 VP

tual hexadecimal address with any jump instruction, but
the assembler supports addressing in relation to the in-
struction pointer by using the $ + a displacement. For ex-
ample, a JMP $+2 jumps over the next two memory
locations following the JMP instruction. The label NEXT
must be followed by a colon (NEXT:) to allow an in-
struction to reference it for a jump. If a colon does not follow a label, you cannot jump to it. Note that the only time
a colon is used after a label is when the label is used with a jump or call instruction.

FIGURE 6-2 A short jump to four memory loca-
tions beyond the address of the next instruction.

Near Jump. The near jump is similar to the short jump,
except that the distance is farther. A near jump passes
control to an instruction in the current code segment lo- Memory
cated within 32K bytes from the near jump instruction. ’_/__,_/-
The near jump is a three-byte instruction that contains an
- opcode followed by a signed 16-bit displacement. The 1g00A
signed displacement adds to the instruction pointer (IP) to 10009
generate the jump address. Because the signed displace-
ment is in the range of 32K, a near jump can jump to 10008
any memory location within the current real mode code 10007
segment. Figure 6-3 illustrates the operation of the real 10006
mode near jump instruction. 10005 | (Jump to here)
The near jump is also relocatable (as was the short

Jump) because it is also a relative jump. If the code seg- 1000 l?’sjo:)gg?r
ment moves to a new location in the memory, the 10003 Ne;f IP = 0006H
distance between the jump instruction and the operand 10002 00
address remains the same. This allows a code segment to 10001 02 Near jump
be relocated by simply moving it. This feature, alon

y ply 2 g 10000 JMP

with the relocatable data segments, makes the Intel
family of microprocessors ideal for use in a general —

purpose computer system. Software can be written and

loaded anywhere in the memory and function without FIGURE 6-3 A near jump that adds the displace-
modification because of the relative jumps and ment (0002H) to the contents of IP.

relocatable data segments.

156 CHAPTER6 PROGRAM CONTROL INSTRUCTIONS

Example 6-2 shows the same basic program that appeared in Example 6-1, except that the jump dis-
tance is greater. The first jump (JMP NEXT) passes control to the instruction at offset memory location
0200H within the code segment. Notice that the instruction assembles as an E9 0200 R. The letter R denotes
a relocatable jump address of 0200H. The relocatable address of 0200H is for the assembler program’s in-
ternal use only. The actual machine language instruction assembles as an E9 F6 01, which does not appear
in the assembler listing. The actual displacement is a 01F6H for this jump instruction. The assembler lists the
jump address as 0200 R, so the address is easier to interpret as software is developed. If the linked execution
file (EXE) or command file ((COM) is displayed in hexadecimal code, the jump instruction appears as an E9
F6 01.

EXAMPLE 6-2

0000 33 DB XOR BX,BX
0002 B8 0001 START: MOV AX,1
0005 03 C3 ADD AX,BX
0007 E9 0200 R JMP NEXT
0200 8B D8 NEXT: MOV BX,AX
0202 E9 0002 R JMP START

Memo
Far Jump. A far jump instruction (see Figure 6-4) obtains a emery

new segment and offset address to accomplish the jump. Bytes 2 e ——
and 3 of this five-byte instruction contain the new offset address;
bytes 4 and 5 contain the new segment address. The offset ad- A3129
dress, which is 16-bits, contains the offset location within the new A3128
code segment. A3127 | (Jump to here)
Example 6-3 lists a short program that uses a far jump
. A3126
instruction. The far jump instruction sometimes appears with
the FAR PTR directive, as illustrated. Another way to obtain a -
far jump is to define a label as a far label. A label is far only if
it is external to the current code segment or procedure. The 10004 A3
IMP UP instruction in the example references a far label. The 10003 00
label UP is defined as a far label by the EXTRN UP:FAR direc- Far jump
tive. External labels appear in programs that contain more than 10002 o
one program file. Another way of defining a label as global isto 10001 27
use a double colon (LABEL.::), following the label in place of 10000 JMP
the single colon. This is required inside procedure blocks that 2
are defined as near if the label is accessed from outside the
procedure block. FIGURE 6—4 A far jump instruction
replaces the contents of both CS and
EXAMPLE 6-3 IP with four bytes following the opcode.

EXTRN UP:FAR

0000 33 DB XOR BX, BX

0002 B8 0001 START: MOV AX,1

0005 03 C3 ADD AX,BX

0007 E9 0200 R JMP NEXT

0200 8B D8 NEXT: MOV BX, AX

0202 EA 0002 ---- R JMP FAR PTR START

0207 EA 0000 ---- E JMP)3

6-1 THE JUMP GROUP 157

When the program files are joined, the linker inserts the address for the UP label into the JMP UP instruc-
tion. It also inserts the segment address in the JMP START instruction. The segment address in JMP FAR PTR
START is listed as — — — — R for relocatable; the segment address in JMP UP is listed as — — — — E for external. In
both cases, the — — — — is filled in by the linker when it links or joins the program files.

Jumps with Register Operands. The jump instruction can also use a 16- or 32-bit register as an operand. This
automatically sets up the instruction as an indirect jump. The address of the jump is in the register specified by
the jump instruction. Unlike the displacement associated with the near jump, the contents of the register are
transferred directly into the instruction pointer. An indirect jump does not add to the instruction pointer, as with
short and near jumps. The JMP AX instruction, for example, copies the contents of the AX register into the IP
when the jump occurs. This allows a jump to any location within the current code segment. In the 80386 and above,
a JMP EAX instruction also jumps to any location within the current code segment; the difference is that in protected
mode the code segment can be 4G bytes long, so a 32-bit offset address is needed.

Example 64 shows how the JMP AX instruction accesses a jump table in the code segment. This program
reads a key from the keyboard and then modifies the ASCII code to a 00H in AL for a ‘1’, a 01H for a 2, and a
02H for a *3°. If a *1’, *2’, or ‘3’ is typed, AH is cleared to 00H. Because the jump table contains 16-bit offset
addresses, the contents of AX are doubled to 0, 2, or 4, so a 16-bit entry in the table can be accessed. Next, the
offset address of the start of the jump table is loaded to SI, and AX is added to form the reference to the jump
address. The MOV AX,[SI] instruction then fetches an address from the jump table, so the JIMP AX instruction
Jjumps to the addresses (ONE, TWO, or THREE) stored in the jump table.

EXAMPLE 64
;A program that reads 1, 2, or 3 from the keyboard
iif a 1, 2, or 3 is typed, a 1, 2, or 3 is displayed.
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 0030 R TABLE DW ONE ;define lookup table
0002 0034 R DW TWO
0004 0038 R DW THREE
0000 .CODE ;start of CODE segment
. STARTUP ;start of program
0017 TOP:
0017 B4 01 MOV AH,1 ;read key into AL
0019 CD 21 INT 21H
001B 2C 31 SUB AL, 31H jconvert to binary
001D 72 F8 JB TOP ;1f below '1’ typed
001F 3C 02 CMP AL, 2
0021 77 F4 JA TOP ;if above ‘3’ typed
0023 B4 00 MOV AH, 0 ;double to 0, 2, or 4
0025 03 CO ADD AX, AX
0027 BE 0000 R MOV SI,OFFSET TABLE ;address lookup table
002Aa 03 FO ADD SI,AX ;form lookup address
002C 8B 04 MOV AX, [SI] ;get ONE, TWO, or THREE
002E FF EO JMP AX ;jump address
0030 ONE:
0030 B2 31 MOV DL,'1" ;load '1’ for display
0032 EB 06 JMP BOT ;go display ‘1°
0034 TWO :
0034 B2 32 MOV DL,'2’ ;load 2’ for display
0036 EB 02 JMP BOT ;go display ‘2’
0038 THREE :
0038 B2 33 MOV DL, '3’ ;load '3’ for display
003A BOT:

158 CHAPTER6 PROGRAM CONTROL INSTRUCTIONS

003A B4 02 MOV AH, 2 ;display number
003C CD 21 INT 21H
.EXIT ;exit to DOS
END ;end of file

Indirect Jumps Using an Index. The jump instruction may also use the [] form of addressing to directly access
the jump table. The jump table can contain offset addresses for near indirect jumps, or segment and offset
addresses for far indirect jumps. (This type of jump is also known as a double-indirect jump if the register jump
is called an indirect jump.) The assembler assumes that the jump is near unless the FAR PTR directive indicates
a far jump instruction. Here Example 6-5 repeats Example 6-4 by using the JMP TABLE (S]] instead of JIMP AX.
This reduces the length of the program.

EXAMPLE 6-5
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 002D R TABLE DW ONE ;lookup table
0002 0031 R DW TWO
0004 0035 R DW THREE
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0017 TOP:
0017 B4 01 MOV AH,1 ;read key to AL
0019 CD 21 INT 21H
001B 2C 31 SUB AL, 31H ;test for below ‘1’
001D 72 F8 JB TOP ;if below ‘1’
001F 3C 02 CMP AL, 2
0021 77 F4 i JA TOP ;if above ‘3’
0023 B4 00 MOV AH, 0 ;calculate table address
0025 03 CO ADD AX,AX
0027 03 FO ADD SI,AX
0029 FF A4 0000 R JMP TABLE [SI] ;jump to ONE, TWO, or THREE
002D ONE:
002D B2 31 MOV DL, 1’ ;load DL with ’1°
002F EB 06 JMP BOT
0031 TWO:
0031 B2 32 MOV DL, 2’ ;load DL with "2°
0033 EB 02 JMP BOT
0035 THREE:
0035 B2 33 MOV DL, '3’ ;load DL with '3’
0037 BOT:
0037 B4 02 MOV AH, 2 ;display ONE, TWO, or THREE
0039 CD 21 INT 21H
.EXIT ;exit to DOS
END ;end of file

The mechanism used to access the jump table is identical with a normal memory reference. The JMP
TABLE [SI] instruction points to a jump address stored at the code segment offset location addressed by SI. It
jumps to the address stored in the memory at this location. Both the register and indirect indexed jump instructions
usually address a 16-bit offset. This means that both types of jumps are near jumps. If a JMP FAR PTR {SI] or
JMP TABLE [SI], with TABLE data defined with the DD directive, appears in a program, the microprocessor as-
sumes that the jump table contains doubleword, 32-bit addresses (IP and CS).

Conditional Jumps and Conditional Sets

+ Conditional jump instructions are always short jumps in the 8086 through the 80286 microprocessors. This limits
the range of the jump to within +127 bytes and —128 bytes from the location following the conditional jump. In the

6-1 THE JUMP GROUP

TABLE 6-1 Conditional jump instructions.

159

Assembly Language Condition Tested Operation
JA Z=0andC=0 Jump if above
JAE C=0 Jump if above or equal
JB C=1 Jump if below
JBE Z=1o0orC=1 Jump if below or equal
JC C=1 Jump if carry set
JE or JZ Z= Jump if equal or jump if zero
JG Z=0andS=0 Jump if greater than
JGE S=0 Jump if greater than or equal
JL S<0 Jump if less than
JLE Z=10rS<>0 Jump if less than or equal
JNC C=0 Jump if no carry
JNE or JNZ Z=0 Jump if not equal or jump if not zero
JNO 0=0 Jump if no overflow
JNS S=0 Jump if no sign
JNP or JPO P=0 Jump if no parity or jump if parity odd
JO O=1 Jump if overflow set
JP or JPE P=1 Jump if parity set or jump if parity even
JS S=1 Jump if sign is set
JCXZ CX=0 Jump if CX is zero

80386 and above, conditional jumps are either short or near jumps. This allows these microprocessors to use a
conditional jump to any location within the current code segment. Table 6-1 lists all the conditional jump instruc-
tions with their test conditions. Note that the Microsoft MASM version 6.X/TASM 5.0 assembler automatically
adjusts conditional jumps if the distance is too great.

('The conditional jump instructions test the following flag bits: sign (S), zero (Z), carry (C), parity (P), and
overflow (O). If the condition under test is true, a branch to the label associated with the jump_instruction occurs.
If the condition is false, the next sequential step in the program executes. For example, a JC will jump if the carry
bit is set.).

The operation of most conditional jump instructions is straightforward because they often test just one flag
bit, although some test more than one. Relative magnitude comparisons require more complicated conditional
jump instructions that test more than one flag bit.

Because both signed and unsigned numbers are used in programming, and because the order of these num-
bers is different, there are two sets of conditional jump instructions for magnitude comparisons. Figure 65 shows
the order of both signed and unsigned 8-bit numbers. The 16- and 32-bit numbers follow the same order as the 8-
bit numbers, except that they are larger. Notice that an FFH (255) is above the 00H in the set of unsigned numbers,
but an FFH (~1) is less than 00H for signed numbers. Therefore, an unsigned FFH is above 00H, but a signed FFH
is less than O0OH.

(When signed numbers are compared, use the JG, JL, JGE, JLE, JE, and JNE instructions. The terms greater
than and less than refer to signed numbers. When unsigned numbers are compared, use the JA, JB, JAE, JBE, JE,
and JNE instructions. The terms above and below refer to unsigned numbers.)

"The remaining conditional jumps test individual flag bits, such as overflow and parity. Notice that JE has an
alternative opcode JZ. All instructions have alternates, but many aren’t used in programming because they don’t
usually fit the condition under test.)(The alternates appear in Appendix B with the instruction set listing.) For
example, the JA instruction (jump if above) has the alternative JINBE (jump if not below or equal). A JA functions
exactly as a INBE, but a INBE is awkward in many cases when compared to a JA.

160 CHAPTER6 PROGRAM CONTROL INSTRUCTIONS

Unsigned numbers Signed numbers
255 FFH +127 7FH
254 FEH +126 7EH
L _—
" P
132 84H +2 02H
131 83H +1 01H
130 82H +0 00H
129 81H -1 FFH
128 80H ‘ -2 FEH
__'_4
4 04H 124 84H
3 03H -125 83H
2 02H -126 82H
1 01H -127 81H
0 00H -128 80H

FIGURE 6-5 Signed and unsigned numbers follow different
orders.

The conditional jump instructions all test flag bits except for JCXZ (jump if CX = 0). Instead of testing flag bits,
JCXZ directly tests the contents of the CX register without affecting the flag bits. For the JCXZ instruction, if CX =0, a
jump occurs, and if CX <> 0, no jump occurs. Likewise for the CX <> 0, no jump occurs.

A program that uses JCXZ appears in Example 6-6. Here, the SCASB instruction searches a table for a OAH. Fol-
lowing the search, a JCXZ instruction tests CX to see if the count has reached zero. If the count is zero, the 0AH is not found
in the table. The carry flag is used in this example to pass the not found condition back to the calling program. Another
method used to test to see if the data are found is the JNE instruction. If INE replaces JCXZ, it performs the same function.
After the SCASB instruction executes, the flags indicate a not-equal condition if the data were not found in the table.

EXAMPLE 6-6
;A procedure that searches a table of 100 bytes for OAH.
;The address, TABLE, is transferred to the procedure
;through the SI register.

0017 SCAN PROC NEAR

0017 B9 0064 MoV CX,100 ;load count of 100

001Aa BO 0OA MOV AL, OAH ;1load AL with OAH

001C FC CLD ;select increment

001D F2/AE REPNE SCASB ;test 100 bytes for 0AH

001F F9 STC ;set carry for not found

0020 E3 01 JCXZ NOT_FOUND ;if not found

0022 F8 CLC ;clear carry if found

0023 NOT_FOUND:

0023 C3 RET ;return from procedure

0024 SCAN ENDP

The LOOP instruction is a combination of a decrement CX and the JNZ conditional jump. In the 8086 through the
80286 processors, LOOP decrements CX; if CX <> 0, it jumps to the address indicated by the label. If CX
becomes a 0, the next sequential instruction executes.

6-2 PROCEDURES 161

Example 6-7 shows how data in one block of memory (BLOCK1) adds to data in a second block of memory
(BLOCK2), using LOOP to control how many numbers add. The LODSW and STOSW instructions access the
data in BLOCK1 and BLOCK2. The ADD AX,ES:[DI] instruction accesses the data in BLOCK2 located in the
extra segment. The only reason that BLOCK?2 is in the extra segment is that DI addresses extra segment data for
the STOSW instruction. The .STARTUP directive only loads DS with the address of the data segment. In this ex-
ample, the extra segment also addresses data in the data segment, so the contents of DS are copied to ES through
the accumulator. Unfortunately, there is no direct move from segment register-to-segment register instruction.

EXAMPLE 6-7
;A program that sums the contents of BLOCK1 and BLOCK2
;and stores the results over top of the data in BLOCK2.
.MODEL SMALL ;select SMALL model
0000 .DATA ;start of DATA segment
0000 0064 [BLOCK1 DW 100 DUP (?) ;100 bytes for BLOCK1
0000
]
00C8 0064 | BLOCK2 DW 100 DUP (?) ;100 bytes for BLOCK2
0000
1
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0017 8C D8 MoV AX,DS ;overlap DS and ES
0019 B8E CO© MOV ES, AX
001B FC CLD ;select increment
001C B9 0064 MOV CX,100 ;load count of 100
001F BE 0000 R MOV SI,OFFSET BLOCK1l ;address BLOCK1
0022 BF 00C8 R MOV DI, OFFSET BLOCK2 ;address BLOCK2
0025 Ll:
0025 AD LODSW ;load AX with BLOCK1
0026 26:03 05 ADD AX,ES: [DI] ;add BLOCK2 data to AX
0029 AB STOSW ;store sum in BLOCK2
002A E2 F9 LOOP L1 ;repeat 100 times
JEXIT ;exit to DOS
END ;end of file

Conditional LOOPs. As with REP, the LOOP instruction also has conditional forms: LOOPE and LOOPNE. The
LOOPE (loop while equal) instruction jumps if CX <> 0 while an equal condition exists. It will exit the loop if the
condition is not equal or if the CX register decrements to 0. The LOOPNE (loop while not equal) instruction
Jjumps if CX <> 0 while a not-equal condition exists. It will exit the loop if the condition is equal or if the CX reg-
ister decrements to 0.

As with the conditional repeat instructions, alternates exist for LOOPE and LOOPNE. The LOOPE instruc-
tion is the same as LOOPZ, and the LOOPNE instruction is the same as LOOPNZ. In most programs, only the
LOOPE and LOOPNE apply.

6-2 PROCEDURES

The procedure or subroutine is an important part of any computer system’s architecture. A procedure is a group
of instructions that usually performs one task. A procedure is a reusable section of the software that is stored in
memory once, but used as often as necessary. This saves memory space and makes it easier to develop software.
The only disadvantage of a procedure is that it takes the computer a small amount of time to link to the procedure

162 CHAPTER6 PROGRAM CONTROL INSTRUCTIONS

and return from it. The CALL instruction links to the procedure, and the RET (return) instruction returns from the
procedure.

The stack stores the return address whenever a procedure is called during the execution of a program.
The CALL instruction pushes the address of the instruction following the CALL (return address) on the
stack. The RET instruction removes an address from the stack so the program returns to the instruction fol-
lowing the CALL.

With the assembler, there are specific rules for storing procedures. A procedure begins with the PROC
directive and ends with the ENDP directive. Each directive appears with the name of the procedure. This
programming structure makes it easy to locate the procedure in a program listing. The PROC directive is
followed by the type of procedure: NEAR or FAR. Example 6-8 shows how the assembler uses the defini-
tion of both a near (intrasegment) and far (intersegment) procedure. In MASM version 6.X, the NEAR or
FAR type can be followed by the USES statement. The USES statement allows any number of registers to
be automatically pushed to the stack and popped from the stack within the procedure. The USES statement
is also illustrated in Example 6-8.

EXAMPLE 6-8

0000 SUMS PROC NEAR

0000 03 C3 ADD AX,BX

0002 03 C1 ADD AX,CX

0004 03 C2 ADD AX,DX

0006 C3 RET

0007 SuMS ENDP

0007 SUMS1 PROC FAR

0007 03 C3 ADD AX,BX

0009 03 C1 ADD AX,CX

000B 03 C2 ADD AX,DX

000D CB RET

000E SUMS1 ENDP

000E SUMS2 PROC NEAR USES BX CX DX

0011 03 €3 ADD AX,BX

0013 03 C1 ADD AX,CX

0015 03 C2 MOV AX,DX
RET

001B SUMS2 ENDP

When these two procedures are compared, the only difference is the opcode of the return instruction. The near
return instruction uses opcode C3H and the far return uses opcode CBH. A near return removes a 16-bit number
from the stack and places it into the instruction pointer to return from the procedure in the current code segment. A
far return removes a 32-bit number from the stack and places it into both IP and CS to return from the procedure to
any memory location.

Procedures that are to be used by all software (global) should be written as far procedures. Procedures that
are used by a given task (local) are normally defined as near procedures.

CALL

The CALL instruction transfers the flow of the program to the procedure. The CALL instruction differs from the
jump instruction because a CALL saves a return address on the stack. The return address returns control to the
instruction that immediately follows the CALL in a program when a RET instruction executes.

6-2 PROCEDURES 163

Memory
l_/__-’-’
AFFFF
AFFFE 00 Stack
SP — AFFFD 03
—/--‘—-’—-
11003
11002 (Procedure)
11001
11000 SP before CALL = FFFF
SS before CALL = A00O
r_\/—— IP before CALL = 0003
10004
10003
10002 OF
10001 FF Near CALL
10000 CALL

FIGURE 6-6 The effect of a near CALL on the stack and the
instruction pointer.

Near CALL. The near CALL instruction is three bytes long; the first byte contains the opcode, and the second and
third bytes contain the displacement, or distance of +32K in the 8086. This is identical to the form of the near jump
instruction. When the near CALL executes, it first pushes the offset address of the next instruction on the stack.
The offset address of the next instruction appears in the instruction pointer (IP). After saving this return address, it
then adds the displacement from bytes 2 and 3 to the IP to transfer control to the procedure. There is no short
CALL instruction.

Why save the IP on the stack? The instruction pointer always points to the next instruction in the program.
For the CALL instruction, the contents of IP are pushed onto the stack, so program control passes to the instruction
following the CALL after a procedure ends. Figure 6-6 shows the return address (IP) stored on the stack and the
call to the procedure.

Far CALL. The far CALL instruction is like a far jump because it can call a procedure stored in any memory lo-
cation in the system. The far CALL is a five-byte instruction that contains an opcode, followed by the next value
for the IP and CS registers. Bytes 2 and 3 contain the new contents of the IP, and bytes 4 and 5 contain the new
contents for CS.

The far CALL instruction places the contents of both IP and CS on the stack before Jjumping to the address
indicated by bytes 2-5 of the instruction. This allows the far CALL to call a procedure located anywhere in the
memory and return from that procedure.

Figure 6-7 shows how the far CALL instruction calls a far procedure. Here, the contents of IP and CS are
pushed onto the stack. Next, the program branches to the procedure. A variant of the far call exists as CALLF, but
this should be avoided in favor of defining the type of call instruction with the PROC statement.

CALLs with Register Operands. Like jump instructions, call instructions also may contain a register operand. An ex-
ample is the CALL BX instruction, which pushes the contents of IP onto the stack. It then jumps to the offset address, lo-

164 CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS

Memory
e
AFFFF
AFFFE 10
AFFFD 00 Stack
AFFFC 00
SP — AFFFB 05
L —
-
11003
11002 (Procedure)
11001
11000 SP before CALL = FFFF
SS before CALL = A00O
- IP before CALL = 0005
10004 11
10003 00
10002 00 Far CALL
10001 02
10000 CALL

FIGURE 6-7 The effect of a far CALL instruction.

cated in register BX, in the current code segment. This type of CALL always uses a 16-bit offset address, stored in any
16-bit register except the segment registers.

Example 6-9 illustrates the use of the CALL register instruction to call a procedure that begins at offset address
DISP. (This call could also directly call the procedure by using the CALL DISP instruction.) The OFFSET address
DISP is placed into the BX register, and then the CALL BX instruction calls the procedure beginning at address
DISP. This program displays an “OK” on the monitor screen.

EXAMPLE 6-9
;A program that displays OK on the monitor screen
;using procedure DISP.
.MODEL TINY ;select TINY model
0000 .CODE ;start of CODE segment
.STARTUP ;start of program
0100 BB 0110 R MOV BX,OFFSET DISP ;address DISP with BX
0103 B2 4F MOV DL, 'O’ ;display ‘O’
0105 FF D3 CALL BX
0107 B2 4B MOV DL, ‘K’ ;display ‘K’
0109 FF D3 CALL BX
LEXIT ;exit to DOS

;A procedure that displays the ASCII contents of DL on
;the monitor screen.

i

6-2 PROCEDURES 165

0110 DISP PROC NEAR
0110 B4 02 MOV AH, 2 ;select function 02H
0112 CD 21 INT 21H ;execute DOS function
0114 C3 RET ;return from procedure
0115 DISP ENDP

END ;end of file

CALLs with Indirect Memory Addresses. A CALL with an indirect memory address is particularly useful
whenever different subroutines need to be chosen in a program. This selection process is often keyed with a
number that addresses a CALL address in a lookup table.

Example 6-10 shows three separate subroutines referenced by the number 1, 2, and 3 as read from the
keyboard on the personal computer. The calling sequence adjusts the value of AL and extends it to a 16-bit
number before adding it to the location of the lookup table. This references one of the three subroutines
using the CALL TABLE [BX] instruction. When this program executes, the letter A is displayed when a 1
is typed, the letter B is displayed when a 2 is typed, and the letter C is displayed when a 3 is typed.

EXAMPLE 6-10

;A program that uses a CALL lookup table to access one of
;three different procedures: ONE, TWO, or THREE.

.MODEL SMALL ;select SMALL model

0000 .DATA ;start of DATA segment
0000 0000 R TABLE DW ONE ;define lookup table
0002 0007 R DW TWO
0004 O0QO0OE R DW THREE
0000 .CODE ;start of CODE segment
0000 ONE PROC NEAR
0000 B4 02 MOV AH, 2 ;display a letter A
0002 B2 41 MOV DL, ‘A’
0004 CD 21 INT 21H
0006 C3 RET
0007 ONE ENDP
0007 TWO PROC NEAR
0007 B4 02 MOV AH,2 ;display letter B
0009 B2 42 MOV DL, ‘B’
000B CD 21 INT 21H
000D C3 RET
000E TWO ENDP
000E THREE PROC NEAR
Q000E B4 02 MOV AH,?2 ;display letter C
0010 B2 43 MOV DL, ’'C’
0012 CD 21 INT 21H
0014 C3 RET
0015 THREE ENDP
. STARTUP ;indicate start of program
002C TOP:
002C B4 01 MOV AH,1 ;read key into AL

002E CD 21 INT 21H

166 CHAPTER6 PROGRAM CONTROL INSTRUGTIONS

0030 2C 31 SUB AL,31H ;convert to binary
0032 72 F8 JB TOP ;if below 0
0034 3C 02 CMP AL,2
0036 77 F4 JA TOP ;if above 2
0038 B4 00 MOV AH,0 ; form lookup address
003A 8B D8 MOV BX,AX
003C 03 DB ADD BX,BX
003E FF 97 0000 R CALL TABLE [BX] ;call procedure
.EXIT ;exit to DOS
END ;end of file

The CALL instruction also can reference far pointers if the instruction appears as a CALL FAR PTR [SI] or
as a CALL TABLE [SI], if the data in the table are defined as doubleword data with the DD directive. These
instructions retrieve a 32-bit address from the data segment memory location addressed by SI and use it as the
address of a far procedure.

~RET

(The return instruction (RET) removes a 16-bit number (near return) from the stack and places it into IP, or
removes a 32-bit number (far return) and places it into IP and CS. The near and far return instructions are both
defined in the procedure’s PROC directive, which automatically selects the proper return instruction.

When IP or IP and CS are changed, the address of the next instruction is at a new memory location. This new
location is the address of the instruction that immediately follows the most recent CALL to a procedure. Figure 6-8
shows how the CALL instruction links to a procedure and how the RET instruction returns in the 8086.

Memory
—]
SP —» AFFFF
AFFFE 00 Stack
AFFFD 03
A
11003 RET Near RET =
11002
11001
11000 SP before CALL = FFFD
| — SS before CALL = A000
— | IP before CALL = 1004
10004
10003 (Return here)
10002 OF
10001 FF
10000 CALL

FIGURE 6-8 The effect of a near return instruction on the stack and

instruction pointer.

6-3 INTRODUCTION TO INTERRUPTS 167

There is one other form of the return instruction, which adds a number to the contents of the stack
pointer (SP) after the return address is removed from the stack. A return that uses an immediate operand is
ideal for use in a system that uses the C or Pascal calling conventions. (This is true, even though the C and
PASCAL calling conventions require the caller to remove stack data for many functions.) These conven-
tions push parameters on the stack before calling a procedure. If the parameters are to be discarded upon re-
turn, the return instruction contains a number that represents the number of bytes pushed to the stack as
parameters.

Example 6-11 shows how this type of return erases the data placed on the stack by a few pushes. The
RET four adds a 4 to SP after removing the return address from the stack. Because the PUSH AX and PUSH
BX together place four bytes of data on the stack, this return effectively deletes AX and BX from the stack.
This type of return rarely appears in assembly language programs, but it is used in high-level programs to
clear stack data after a procedure. Notice how parameters are addressed on the stack by using the BP reg-
ister, which by default addresses the stack segment. Parameter stacking is common in procedures written for
C or PASCAL by using the C or PASCAL calling conventions.

EXAMPLE 6-11

0000 B8 001E MOV AX, 30

0003 BB 0028 MOV BX, 40

0006 50 PUSH AX ;stack parameter 1

0007 53 PUSH BX ;stack parameter 2

0008 E8 0066 CALL ADDM ;add parameters from stack
. . ;program continues here

0071 ADDM PROC NEAR

0071 55 PUSH BP ;save BP

0072 8B EC MOV BP,SP ;address stack with BP

0074 8B 46 04 MOV AX, [BP+4] ;get parameter 1

0077 03 46 06 ADD AX, [BP+6] ;add parameter 2

007A 5D POP BP ;restore BP

007B C2 0004 RET 4 ;return, dump parameters

007E : ADDM ENDP

As with the CALLN and CALLF instructions, there are also variants of the return instruction: RETN and
RETF. As with the CALLN and CALLF instructions, these variants should also be avoided in favor of using the
PROC statement to define the type of call and return.

6-3 INTRODUCTION TO INTERRUPTS

An interrupt is either a hardware-generated CALL (externally derived from a hardware signal) or a software-
generated CALL (internally derived from the execution of an instruction or by some other internal event). At times,
an internal interrupt is called an exception. Either type interrupts the program by calling an interrupt service
procedure or interrupt handler.

This section explains software interrupts, which are special types of CALL instructions. This section descibes
the three types of software interrupt instructions (INT, INTO, and INT 3), provides a map of the interrupt vectors,
and explains the purpose of the special interrupt return instruction (IRET).

168 CHAPTER6 PROGRAM CONTROL INSTRUCTIONS

TABLE 6-2 Interrupt vectors.

Number Address Microprocessor Function
0 OH-3H All Divide error
1 4H-7H All Aingle-step
2 8H-BH All NMI pin
3 CH-FH All Breakpoint
4 10H-13H All Interrupt on overflow
5 14H-17H 80186—Pentium 4 Bound instruction
6 18H-1BH 80186—Pentium 4 Invalid opcode
7 1CH-1FH 80186-Pentium 4 Coprocessor emulation
8 20H-23H 80386—Pentium 4 Double fault
9 24H-27H 80386 Coprocessor segment overrun
A 28H-2BH 80386—Pentium 4 Invalid task state segment
B 2CH-2FH 80386—Pentium 4 Segment not present
C 30H-33H 80386—Pentium 4 Stack fault
D 34H-37H 80386—Pentium 4 General protection fault (GPF)
E 38H-3BH 80386-Pentium 4 Page fault
F 3CH-3FH — Reserved
10 ' 40H-43H 80286—Pentium 4 Floating-point error
11 44H-47H 80486SX Alignment check interrupt
12 48H-4FH Pentium/Pentium 4 Machine check exception
13-1F 50H-7FH — Reserved
20-FF 80H-3FFH — User interrupts
Interrupt Vectors

An interrupt vector is a four-byte number stored in the first 1024 bytes of the memory (000000H-0003FFH) when
the microprocessor operates in the real mode. In the protected mode, the vector table is replaced by an interrupt
descriptor table that uses eight-byte descriptors to describe each of the interrupts. There are 256 different interrupt
vectors, and each vector contains the address of an interrupt service procedure. Table 6--2 lists the interrupt vectors,
with a brief description and the memory location of each vector for the real mode. Each vector contains a value for
IP and CS that forms the address of the interrupt service procedure. The first two bytes contain the IP, and the last
two bytes contain the CS.

Intel reserves the first 32 interrupt vectors for the present and future microprocessor products. The remaining
interrupt vectors (32-255) are available for the user. Some of the reserved vectors are for errors that occur during the
execution of software, such as the divide error interrupt. Some vectors are reserved for the coprocessor. Still others
occur for normal events in the system. In a personal computer, the reserved vectors are used for system functions, as
detailed later in this section. Vectors 1-6, 7, 9, 16, and 17 function in the real mode and protected mode; the re-
maining vectors function only in the protected mode.

Interrupt Instructions

The microprocessor has three different interrupt instructions that are available to the programmer: INT, INTO, and
INT 3. In the real mode, each of these instructions fetches a vector from the vector table, and then calls the procedure
stored at the location addressed by the vector. In the protected mode, each of these instructions fetches an interrupt
descriptor from the interrupt descriptor table. The descriptor specifies the address of the interrupt service procedure.
The interrupt call is similar to a far CALL instruction because it places the return address (IP/EIP and CS) on the
stack.

6-3 INTRODUCTION TO INTERRUPTS 169

INTs. There are 256 different software interrupt instructions (INTs) available to the programmer. Each INT instruc-
tion has a numeric operand whose range is 0 to 255 (OOH-FFH). For example, the INT 100 uses interrupt vector 100,
which appears at memory address 190H-193H. The address of the interrupt vector is determined by multiplying the
interrupt type number times 4. For example, the INT 10H instruction calls the interrupt service procedure whose
address is stored beginning at memory location 40H (10H x 4) in the real mode. In the protected mode, the interrupt
descriptor is located by multiplying the type number by 8 instead of 4 because each descriptor is eight bytes long.

Each INT instruction is two bytes long. The first byte contains the opcode, and the second byte contains the
vector type number. The only exception to this is INT 3, a one-byte special software interrupt used for breakpoints.

Whenever a software interrupt instruction executes, it (1) pushes the flags onto the stack, (2) clears the T and I
flag bits, (3) pushes CS onto the stack, (4) fetches the new value for CS from the interrupt vector, (5) pushes IP onto
the stack, (6) fetches the new value for IP from the vector, and (7) jumps to the new location addressed by CS and IP

The INT instruction performs as a far CALL except that it not only pushes CS and IP onto the stack, but it also
pushes the flags onto the stack. The INT instruction performs the operation of a PUSHF, followed by a far CALL
instruction.

Notice that when the INT instruction executes, it clears the interrupt flag (I), which controls the external hard-
ware interrupt input pin INTR (interrupt request). When I = 0, the microprocessor disables the INTR pin; when I = 1,
the microprocessor enables the INTR pin.

Software interrupts are most commonly used to call system procedures because the address of the system
function need not be known. The system procedures are common to all system and application software. The
interrupts often control printers, video displays, and disk drives. Besides relieving the program from remembering the
address of the system call, the INT instruction replaces a far CALL that would otherwise be used to call a system
function. The INT instruction is two bytes long whereas the far CALL is five bytes long. Each time that the INT in-
struction replaces a far CALL, it saves three bytes of memory in a program. This can amount to a sizable saving if the
INT instruction often appears in a program, as it does for system calls.

IRET. The interrupt return instruction (IRET) is used only with software or hardware interrupt service procedures.
Unlike a simple return instruction (RET), the IRET instruction will (1) pop stack data back into the IP, (2) pop stack
data back into CS, and (3) pop stack data back into the flag register. The IRET instruction accomplishes the same
tasks as the POPF, followed by a far RET instruction.

Whenever an IRET instruction executes, it restores the contents of I and T from the stack. This is important
because it preserves the state of these flag bits. If interrupts were enabled before an interrupt service procedure, they
are automatically re-enabled by the IRET instruction because it restores the flag register.

INT3. AnINT 3 instruction is a special software interrupt designed to function as a breakpoint. The difference between
it and the other software interrupts is that INT 3 is a one-byte instruction, while the others are two-byte instructions.

It is common to insert an INT 3 instruction in software to interrupt or break the flow of the software. This function
is called a breakpoint. A breakpoint occurs for any software interrupt, but because INT 3 is one byte long, it is easier to
use for this function. Breakpoints help to debug faulty software.

INTO. Interrupt on overflow (INTO) is a conditional software interrupt that tests the overflow flag (O). If O = 0, the
INTO instruction performs no operation; if O = 1 and an INTO instruction executes, an interrupt occurs via vector type
number 4.

The INTO instruction appears in software that adds or subtracts signed binary numbers. With these operations, it is
possible to have an overflow. Either the JO instruction or INTO instruction detects the overflow condition.

An Interrupt Service Procedure. Suppose that, in a particular system, a procedure is required to add the contents of DI,
SI, BP, and BX and then save the sum in AX. Because this is a common task in this system, it is may occasionally be
worthwhile to develop the task as a software interrupt. Realize that interrupts are usually reserved for system events and
this is merely an example showing how an interrupt service procedure appears. Example 612 shows this software inter-
rupt. The main difference between this procedure and a normal far procedure is that it ends with the IRET instruction
instead of the RET instruction, and the contents of the flag register are saved on the stack during its execution.

170 CHAPTER6 PROGRAM CONTROL INSTRUCTIONS

EXAMPLE 6-12

0000 INTS PROC FAR
0000 03 C3 ADD AX,BX
0002 03 C5 ADD AX,BP
0004 03 C7 ADD AX,DI
0006 03 C6 ADDs AX,SI
0008 CF IRET

0009 INTS ENDP
Interrupt Control

Although this section does not explain hardware interrupts, two instructions are introduced that control the INTR pin. The
set interrupt flag instruction (STT) places a 1 into the I flag bit, which enables the INTR pin. The clear interrupt flag in-
struction (CLI) places a 0 into the I flag bit, which disables the INTR pin. The STI instruction enables INTR and the CLI
instruction disables INTR. In a software interrupt service procedure, hardware interrupts are enabled as one of the first
steps. This is accomplished by the STI instruction. The reason interrupts are enabled early in an interrupt service proce-
dure is that just about all of the /O devices in the personal computer are interrupt-processed. If the interrupts are disabled
too long, severe system problems result.

Interrupts in the Personal Computer

The interrupts found in the personal computer differ somewhat from the ones presented in Table 6-2. The reason
that they differ is that the original personal computers are 8086/8088-based systems. This meant that they only
contained Intel-specified interrupts 0—4. This design is carried forward so that newer systems are compatible with
the early personal computers.

Because the personal computer is operated in the real mode, the interrupt vector table is located at addresses
00000H-003FFH. The assignments used by computer system are listed in Table 6-3. Notice that these differ somewhat
from the assignments in Table 6-2. Some of the interrupts shown in this table are used in example programs in later chap-
ters. An example is the clock tick, which is extremely useful for timing events because it occurs 18.2 times per second in
all personal computers.

Interrupts 00OH-1FH and 70H-77H are present in the computer, no matter what operating system is installed. If
DOS is installed, interrupts 20H—2FH are also present. The BIOS uses interrupts 11H through 1FH, the video BIOS uses
INT 10H, and the hardware in the system uses interrupts 00H through OFH and 70H through 77H.

6-4 MACHINE CONTROL AND MISCELLANEOUS INSTRUCTIONS

The last category of real mode instructions found in the microprocessor are the machine control and miscellaneous
group. These instructions provide control of the carry bit, sample the TEST pin, and perform various other func-
tions. Because many of these instructions are used in hardware control, they need only be explained briefly at this
.point.

Controlling the Carry Flag Bit

The carry flag (C) propagates the carry or borrow in multiple-word/double word addition and subtraction. It also
indicates errors in procedures. There are three instructions that control the contents of the carry flag: STC (set
carry), CLC (clear carry), and CMC (complement carry).

Because the carry flag is seldom used, except with multiple word addition and subtraction, it is available for
other uses. The most common task for the carry flag is to indicate an error upon return from a procedure. Suppose that

64 MACHINE CONTROL AND MISCELLANEQUS INSTRUCTIONS 171

TABLE 6-3 The hexadecimal interrupt assignments for the personal computer.

Number Function
0] Divide error
1 Single-step
2 NMI pin (often parity error checks)
3 Breakpoint
4 Overflows
5 Print screen key and BOUND instruction
6 lllegal instruction
7 Coprocessor emulation
8 Clock tick (18.2 Hz)
9 Keyboard
A IRQ2 (cascade in AT system)
B-F IRQ3-IRQ7
10 Video BIOS
11 Equipment environment
12 Conventional memory size
13 Direct disk services
14 Serial COM port service
15 Miscellaneous
16 Keyboard service
17 Parallel port (LPT) service
18 ROM BASIC
19 Reboot
1A Clock service
1B Control-break handler
1C User timer service
1D Pointer for video parameter table
1E Pointer for disk parameter table
1F Pointer for graphic character pattern table
20 Terminate program (DOS 1.0)
21 DOS services
22 Program termination handler
23 Control-C handler
24 Critical error handler
25 Read disk
26 Write disk
27 Terminate and stay resident (TSR)
28 DOS idle
2F Multiplex handler
31 DPMI (DOS protected mode interface) provided by Windows
33 Mouse driver)
67 VCPI (virtual control program interface) provided by HIMEM.SYS
70-77 IRQ8-IRQ15

a procedure reads data from a disk memory file. This operation can be successful, or an error such as file-not-found
can occur. Upon return from this procedure, if C = 1, an error has occurred; if C = 0, no error occurred. Most of the
DOS and BIOS procedures use the carry flag to indicate error conditions.

174 CHAPTER6 PROGRAM CONTROL INSTRUCTIONS

21. The LOCK prefix causes the LOCK pin to become a logic 0 for the duration of the locked instruction. The
ESC instruction passes instruction to the numeric coprocessor.

6-6 QUESTIONS AND PROBLEMS

. What is a short IMP?

. Which type of IMP is used when jumping to any location within the current code segment?

. Which JMP instruction allows the program to continue execution at any memory location in the system?

. Which JMP instruction is five bytes long?

What is the range of a near jump in the 80386—Pentium 4 microprocessors?

Which type of JMP instruction (short, near, or far) assembles for the following:

(a) if the distance is 0210H bytes

(b) if the distance is 0020H bytes

(c) if the distance is 10000H bytes

7. What can be said about a label that is followed by a colon?
8. The near jump modifies the program address by changing which register or registers?
9. The far jump modifies the program address by changing which register or registers?

10. Explain what the JMP AX instruction accomplishes. Also identify it as a near or a far jump instruction.

11. Contrast the operation of a JMP DI with a JMP [DI].

12. Contrast the operation of a JMP [DI] with a JMP FAR PTR [DI].

13. List the five flag bits tested by the conditional jump instructions.

14. Describe how the JA instruction operates.

15. When will the JO instruction jump?

16. Which conditional jump instructions follow the comparison of signed numbers?

17. Which conditional jump instructions follow the comparison of unsigned numbers?

18. Which conditional jump instructions test both the Z and C flag bits?

19. When does the JCXZ instruction jump?

20. The 8086 LOOP instruction decrements register and tests it for a O to decide if a jump occurs.

21. Explain how the LOOPE instruction operates.

22. Develop a short sequence of instructions that stores a 00H into 150H bytes of memory, beginning at extra seg-
ment memory location DATA. You must use the LOOP instruction to help perform this task.

23. Develop a sequence of instructions that searches through a block of 100H bytes of memory. This program
must count all the unsigned numbers that are above 42H and all that are below 42H. Byte-sized data segment
memory location UP must contain the count of numbers above 42H, and data segment location DOWN must
contain the count of numbers betow 42H.

24. What is a procedure?

25. Explain how the near and far CALL instructions function.

26. How does the near RET instruction function?

27. The last executable instruction in a procedure must be a(n)

28. Which directive identifies the start of a procedure?

29. How is a procedure identified as near or far?

30. Explain what the RET 6 instruction accomplishes.

31. Write a near procedure that cubes the contents of the CX register. This procedure may not affect any register '

except CX.

o E W~

6-6

32.

33.

34.
35.
36.
37.
38.
39.
40.
41.
42.
43,
44,
45.

QUESTIONS AND PROBLEMS 175

Write a procedure that multiplies DI by ST and then divides the result by 100H. Make sure that the result is left
in AX upon returning from the procedure. This procedure may not change any register except AX.
What is an interrupt?

Which software instructions call an interrupt service procedure?

How many different interrupt types are available in the microprocessor?

What is the purpose of interrupt vector type number 0?

Ilustrate the contents of an interrupt vector and explain the purpose of each part.

How does the IRET instruction differ from the RET instruction?

What is the IRETD instruction?

The INTO instruction only interrupts the program for what condition?

The interrupt vector for an INT 40H instruction is stored at which memory locations?

What instructions control the function of the INTR pin?

Which personal computer interrupt services the parallel LPT port?

Which personal computer interrupt services the keyboard?

What instruction tests the TEST pin?

CHAPTER 7
Programming the Microprocessor

INTRODUCTION

This chapter develops programs and programming techniques using the MASM macro assembler program, the
DOS function calls, and the BIOS function calls. Many of the DOS function calls and BIOS function calls are
used in this chapter, but all are explained in complete detail in Appendix A. Please scan the function calls listed
in Appendix A as you read this chapter. The MASM assembler has already been explained and demonstrated in
prior chapters, but there are still more features to learn at this point.

Some programming techniques explained in this chapter include macro sequences, keyboard and display
manipulation, program modules, library files, using the mouse, interrupt hooks, and other important program-
ming techniques. This chapter is meant as an introduction to programming, yet it provides valuable programming
techniques that provide a wealth of background so that programs can be easily developed for the personal com-
puter by using MSDOS as a springboard.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

Use the MASM assembler and linker program to create programs that contain more than one module.
Explain the use of EXTRN and PUBLIC as they apply to modular programming.

Set up a library file that contains commonly used subroutines.

Write and use MACRO and ENDM to develop macro sequences used with linear

programming.

Develop programs using DOS function calls.

Differentiate a DOS function call from a BIOS function call.

. Show how to hook into interrupts using DOS function calls.

. Use conditional assembly language statements in programs.

L=

o N o

176

7-1 MODULAR PROGRAMMING 177

7-1 MODULAR PROGRAMMING

Many programs are too large to be developed by one person. This means that programs are routinely developed by
teams of programmers. The linker program is provided with MSDOS so that programming modules can be linked
together into a complete program. Linking is also an internal function of the Programmer’s WorkBench program
that is bundled with MASM version 6.X. This section of the text describes the linker, the linking task, library files,
EXTRN, and PUBLIC as they apply to program modules and modular programming. It also introduces the use of
Programmer’s WorkBench, which is also used to manage programs generated by teams.

The Assembler and Linker

The assembler program converts a symbolic source module (file) into a hexadecimal object file. We have seen
many examples of symbolic source files, written in assembly language, in prior chapters. Example 7-1 shows how
the assembler dialog that appears as a source module named NEW.ASM is assembled. Note that this dialog is used
with version 6.11 at the DOS command line. This assembler also uses the Programmer’s WorkBench program for
development, without resorting to the DOS command line. Whenever you create a source file, it should have an
extension of ASM. Source files are created by using WorkBench, an editor that comes with the assembler, or by
almost any other word processor or editor capable of generating an ASCII file.

EXAMPLE 7-1

C:\MASM611\FILES>ml /Flnew.lst new.asm
Microsoft (R) Macro Assembler Version 6.11
Copyright (C) Microsoft Corp 1981-1993. All rights reserved.

Assembling: new.asm

Microsoft (R) Segmented Executable Linker Version 5.31.009 Jul 13 1992
Copyright (C) Microsoft Corp 1984-1992. All rights reserved.

Object Modules [.objl: new.obj
Run File [new.exe]: ”"new.exe”
List File [nul.map]: NUL
Libraries [.lib]:

Definitions File [nul.def]:

C:\MASM611\FILES>

The assembler program (ML) requires the source file name following ML. In the example, the /F switch is used to
create a listing file named NEW.LST. Although this is optional, it is recommended so the output of the assembler can be
viewed for troubleshooting problems. The source listing file (LST) contains the assembled version of the source file and its
hexadecimal machine language equivalent. The cross-reference file (.CRF), which is not generated in this example, lists all
labels and pertinent information required for cross-referencing.

The linker program, which executes as the second part of ML, reads the object files that are created by the assembler
program and links them together into a single execution file. An execution file is created with the file name extension EXE.
Execution files are selected by typing the file name at the DOS prompt (A:\). An example execution file is FROG.EXE,
which is executed by typing FROG at the DOS command prompt.

If a file is short enough (less than 64K bytes long) it can be converted from an execution file to a command file
(.COM). The command file is slightly different from an execution file in that the program must be originated at location 100H
before it can execute. This means that the program must be no larger than 64K—100H in length. The ML program generates
a command file if the tiny model is used with a starting address of 100H. Note that Programmer’s WorkBench can also be
configured to generate a command file. The main advantage of a command file is that it loads off the disk into the computer
much more quickly than an execution file. It also requires less disk storage space than the equivalent execution file,

178 CHAPTFR 7 PROGRAMMING THE MICROPROCESSOR

Example 7-2 shows the linker program protocol when it is used to link the files NEW, WHAT, and
DONUT. The linker also links library files (LIBS) so procedures, located within LIBS, can be used with the linked
execution file. To invoke the linker, type LINK at the DOS command prompt, as illustrated in Example 7-2. Note
that before files are linked, they must first be assembled and they must be error-free. ML not only links the files,
but it also assembles them prior to linking.

EXAMPLE 7-2

C:\MASM611\FILES>ml new.asm what.asm donut.asm
Microsoft (R) Macro Assembler Version 6.11
Copyright (C) Microsoft Corp 1981-1993. All rights reserved.

Assembling: new.asm
Assembling: what.asm
Assembling: donut.asm

Microsoft (R) Segmented Executable Linker Version 5.31.009 Jul 13 1992
Copyright (C) Microsoft Corp 1984-1992. All rights reserved.

Object Modules [.obj): new.obj+
Object Modules [.obj]: “what.obj”+
Object Modules [.obj}: ”donut.obj”
Run File [new.exe]: "new.exe”

List File ([nul.map): NUL

Libraries [.1lib]}:

Definitions File [nul.def]:

C:\MASM611\FILES>

In this example, after typing ML, the linker program asks for the “Object Modules,” which are created by
the assembler. In this example, we have three object modules: NEW, WHAT, and DONUT. If more than one
object file exists, the main program file (NEW, in this example) is typed first, followed by any other supporting
modules.

Library files are entered after the file name and after the switch /LINK. In this example, we did not enter a
library file name. To use a library called NUMB.LIB while assembling a program called NEW.ASM, type ML
NEW.ASM /LINK NUMB.LIB.

PUBLIC and EXTRN

The PUBLIC and EXTRN directives are very important to modular programming. We use PUBLIC to declare that
labels of code, data, or entire segments are available to other program modules. EXTRN (external) declares that la-
bels are external to a module. Without these statements, modules could not be linked together to create a program
by using modular programming techniques. They might link, but one module would not be able to communicate to
another.

The PUBLIC directive is placed in the opcode field of an assembly language statement to define a label as
public, so that the label can be used by other modules. The label declared as public can be a jump address, a data ad-
dress, or an entire segment. Example 7-3 shows the PUBLIC statement used to define some labels and make them
public to other modules. When segments are made public, they are combined with other public segments that con-
tain data with the same segment name.

EXAMPLE 7-3

.MODEL SMALL

.DATA
PUBLIC DATAL ;declare DATAl and DATA2 public
PUBLIC DATA2

7-1 MODULAR PROGRAMMING 179

0000 0064] DATAL DB 100 DUP (?)
00
]
0064 0064(DATA2 DB 100 DUP (?)
00
]
.CODE
. STARTUP
PUBLIC READ ;declare READ public
READ PROC FAR
0006 B4 06 MOV AH, 6 ;read keyboard
0008 B2 FF MOV DL, OFFH
000A CD 21 INT 21H
000C 74 F8 JE READ ;if no key typed
000E CB RET
READ ENDP
END

The EXTRN statement appears in both data and code segments to define labels as external to the segment.
If data are defined as external, their sizes must be defined as BYTE, WORD, or DWORD. If a jump or call address
is external, it must be defined as NEAR or FAR. Example 7-4 shows how the external statement is used to indi-
cate that several labels are external to the program listed. Notice in this example that any external address or data
is defined with the letter E in the hexadecimal assembled listing.

EXAMPLE 7-4
.MODEL SMALL
.DATA
EXTRN DATAl:BYTE
EXTRN DATA2:BYTE
EXTRN DATA3 :WORD
EXTRN DATA4 :DWORD
.CODE
EXTRN READ:FAR
. STARTUP
0005 BF 0000 E MOV DX, OFFSET DATAl
0008 B9 000A MOV CX,10
000B START :
000B 9A 0000 ---- E CALL READ
0010 AA STOSB
0011 E2 F8 LOOP START
LEXIT
END
Libraries

Library files are collections of procedures that are used by many different programs. These procedures are assem-
bled and compiled into a library file by the LIB program that accompanies the MASM assembler program. Li-
braries allow common procedures to be collected into one place so they can be used by many different
applications. The library file (FILENAME.LIB) is invoked when a program is linked with the linker program.

Why bother with library files? A library file is a good place to store a collection of related procedures. When
the library file is linked with a program, only the procedures required by the program are removed from the library
file and added to the program. If any amount of assembly language programiming is to be accomplished efficiently,
a good set of library files is essential and saves many hours in recoding common functions.

180 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

Creating a Library File. A library file is created with the LIB command, typed at the DOS prompt. A library file
is a collection of assembled .OBI files that each perform one procedure or task. Example 7-5 shows two separate
files (READ_KEY and ECHO) that will be used to structure a library file. Please notice that the name of the pro-
cedure must be declared PUBLIC in a library file and does not necessarily need to match the file name, although it
does in this example. Each procedure in this example is defined as a FAR procedure, so that the linker can place
the procedures in a code segment separate from the main program. When FAR is used to define a procedure, we
usually call it a global procedure.

EXAMPLE 7-5
;:The first library module is called READ_KEY. This
;procedure reads a key from the keyboard and returns with
;its ASCII code in AL.
.MODEL TINY
PUBLIC READ_KEY
READ_KEY PROC FAR
0000 52 PUSH DX
READ_KEY1:
0001 B4 06 MOV RH, 6
0003 B2 FF MOV DH, OFFH
0005 CD 21 INT 21H
0007 74 F8 JE READ_KEY1
0009 5A POP DX
000A CB RET
READ_KEY ENDP
END
;The second library module is called ECHO. This
;procedure displays the ASCII character in AL on the
;video screen.
.MODEL TINY
PUBLIC ECHO
ECHO PROC FAR
0000 52 PUSH DX
0001 B4 06 MOV AH, 6
0003 8A DO MOV DL, AL
0005 CD 21 INT 21H
0007 5A POP DX
0008 CB RET

ECHO ENDP
END

After each file is assembled (note that there are two complete example procedures in Example 7-5), the LIB
program is used to combine them into a single library file. The LIB program prompts for information, as illustrated
in Example 76, in which these files are combined to form the library IO.

EXAMPLE 7-6

C:\MASM611\FILES\LIB

Microsoft (R) Library Manager Version 3.20.010
Copyright (C) Microsoft Corp. 1983-1992. All rights reserved.

7-1 MODULAR PROGRAMMING 181

Library name: IO

Library file does not exist. Create? Y
Operations: READ_KEY+ECHO

List file: IO

The LIB program begins with the copyright message from Microsoft, followed by the prompt Library name.
The library name chosen is IO for the I0.LIB file. Because this is a new file, the library program asks if we wish
to create the library file. The Operations: prompt is where the library module names are typed. In this case, we
create a library by using two procedure files (READ_KEY and ECHO). Note that these files were created and as-
sembled as READ_KEY.ASM and ECHO.ASM from Example 7-5. The list file shows the contents of the library
and is illustrated in Example 7-7. The list file shows the size and names of the files used to create the library, and
the public label (procedure name) that is used in the library file.

To add additional library modules, type the name of the library file after invoking LIB. At the Operations:
prompt, type the new module name, preceded by a plus sign to add a new procedure. If you must delete a library
module, use a minus sign before the operation file name.

EXAMPLE 7-7

| 2100 2 (0 RU— .ECHO READ_KEY READ_KEY

READ_KEY Offset: 00000010H Code and data size: BH
READ_KEY

ECHO Offset: 00000070H Code and data size: 9H

Once the library file is linked to your program file, only the library procedures actually used by your pro-
gram are placed in the execution file. Don’t forget to use the label EXTRN when specifying library calls from your
program module. For example, to use the ECHO procedure in a program, type EXTRN ECHO:FAR.

Macros

A macro is a group of instructions that perform one task, just as a procedure performs one task. The differ-
ence is that a procedure is accessed via a CALL instruction, while a macro, and all the instructions defined
in the macro, is inserted in the program at the point of usage. Creating a macro is very similar to creating a
new opcode that can be used in the program. The name of the macro and any parameters associated with it
are typed, and the assembler then inserts them into the program. Macro sequences execute faster than pro-
cedures because there are no CALL and RET instructions to execute. The instructions of the macro are
placed in your program by the assembler at the point they are invoked.

The MACRO and ENDM directives delineate a macro sequence. The first statement of a macro is the
MACRO instruction, which contains the name of the macro and any parameters associated with it. An ex-
ample is MOVE MACRO A,B, which defines the macro name as MOVE. This new pseudo opcode uses two
parameters: A and B. The last statement of a macro is the ENDM instruction, which is placed on a line by
itself. Never place a label in front of the ENDM statement, or the macro will not assemble.

Example 7-8 shows how a macro is created and used in a program. The first six lines of code define
the macro. This macro moves the word-sized contents of memory location B into word-sized memory loca-
tion A. After the macro is defined in the example, it is used twice. The macro is expanded by the assembler
in this example, so that you can see how it assembles to generate the moves. Any hexadecimal machine lan-
guage statement followed by a number (1, in this example) is a macro expansion statement. The expansion
statements are not typed in the source program; they are generated by the assembler to show that the assem-
bler has inserted them into the program. Notice that the comment in the macro is preceded with ;; instead of
; as is customary. Macro sequences must always be defined before they are used in a program, so they gen-
erally appear at the top of the code segment.

182 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

EXAMPLE 7-8
MOVE MACRO A,B

PUSH AX

MOV AX,B

MOV A,AX

POP AX

ENDM

MOVE VAR1, VAR2 ;use the MOVE macro
0000 50 1 PUSH AX
0001 Al 0002 R 1 MOV AX,VAR2
0004 A3 0000 R 1 MOV VAR1, AX
0007 S8 1 POP AX

MOVE VAR3,VAR4 ;use the MOVE macro
0008 50 1 PUSH AX
0009 Al 0006 R 1 MOV AX,VAR4
000C A3 0004 R 1 MOV VAR3, AX
000F 58 1 POP AX

Local Variables in a Macro. Sometimes, macros contain local variables. A local variable is one that appears in
the macro, but is not available outside the macro. To define a local variable, we use the LOCAL directive. Ex-
ample 7-9 shows how a local variable, used as a jump address, appears in a macro definition. If this jump address
is not defined as local, the assembler will flag it with errors on the second and subsequent attempts to use the
macro.

EXAMPLE 7-9
READ MACRO A ; ;reads keyboard
LOCAL READL ; ;define READ1 as local
PUSH DX
READ1:
MOV AH, 6
MOV DL, OFFH
INT 21H
JE READ1
MOV A,AL
POP DX
ENDM
READ VARS ;read key into VAR5
0000 52 1 PUSH DX
0001 1 220000:
0001 B4 06 1 MOV AH, 6
0003 B2 FF 1 MOV DL, OFFH
0005 CD 21 1 INT 21H
0007 74 F8 1 JE 220000
0009 A2 0008 R 1 MOV VARS, AL
000C SA 1 POP DX
READ VAR6 ;read key into VARG

000D 52 1 PUSH DX

7-1 MODULAR PROGRAMMING 183

000E 1 220001

000E B4 06 1 MOV AH, 6
0010 B2 FF 1 MOV DL, OFFH
0012 D 21 1 INT 21H
0014 74 F8 1 JE 220001
0016 A2 0009 R 1 MOV VARG, AL
0019 5A 1 POP DX

This example reads a character from the keyboard and stores it into the byte-sized memory location indicated
as a parameter with the macro. Notice how the local label READ] is treated in the expanded macros. The assembler
uses labels that start with ?? to designate them as assembler- generated labels.

The LOCAL directive must always immediately follow the MACRO directive, without any intervening
spaces or comments. If a comment or space appears between MACRO and LOCAL, the assembler indicates an
error and will not accept the variable as local.

Placing MACRO Definitions in Their Own Module. Macro definitions can be placed in the program file as shown,
or they can be placed in their own macro module. A file can be created that contains only macros to be included with
other program files. We use the INCLUDE directive to indicate that a program file will include a module that contains
external macro definitions. Although this is not a library file, for all practical purposes it functions as a library of macro
sequences.

When macro sequences are placed in a file (often with the extension INC or MAC), they do not contain
PUBLIC statements. If a file called MACRO.MAC contains macro sequences, the INCLUDE statement is placed
in the program file as INCLUDE C:\ASSM\MACRO.MAC. Notice that the macro file is on drive C, subdirectory
ASSM in this example. The INCLUDE statement includes these macros, just as if you had typed them into the file.
No EXTRN statement is needed to access the macro statements that have been included. Programs may contain
both macro include files and library files.

Conditional Statements in Macro Sequences

Conditional assembly language statements are available to the assembler for use in the assembly process and in
macro sequences. The conditional statements create instructions that control the flow of the program and are
variations of the IF-THEN, IF-THEN-ELSE, DO-WHILE, and REPEAT-UNTIL constructs used in high-level
language programming languages, which were presented in the last chapter. The conditional statements for macro
sequence control—presented here—are also available, but they function to create instructions only at assembly time
within macro sequences. The assembler distinguishes conditional statements for macro control and condition
statements for program flow with a period. For example, the .IF statement is used for program flow control, while the
IF statement is used for macro assembly control. Both types of conditional statements may be used in a macro, but the
macro conditionals may only be used in a macro.

Conditional Assembly Statements

As mentioned, conditional assembly is implemented with the IF-THEN or IF-THEN-ELSE construct found in
high-level languages. Table 7-1 shows the forms used for the IF statement in the conditional assembly process.

The IF and ENDIF statements allow portions of the program to assemble if some condition is met.
Otherwise, the statements between IF and ENDIF do not assemble and generate code.

Example 7-10 shows how the IF, ELSE, and ENDIF statements are used to conditionally assemble values
for the width and length of paper in a program. Note that TRUE and FALSE are defined as 1 and 0. This is
important because these values are not predefined by the assembler. Next, the width and length of the paper are
adjusted by using TRUE and FALSE statements. This can be expanded to ask an entire series of questions about a
program so that custom versions can be created. Example 7-10(a) is the original source-code, and Example
7-10(b) shows how the program assembles for TRUE answers for both the width and length. Example 7-10(c)
shows the assembled output for a false width and a true length.

184 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

When Example 7-10(a) is assembled, TRUE and FALSE are equated to WIDT and LENGT to modify the
way that the assembler forms the program. In Example 7-10(b), both WIDT and LENGT are defined as TRUE,

which causes the assembler to modify the way the
program is assembled, so that a page is 72
columns wide and the length is continuous. Ex-
ample 7-10(c) is another example in which the
WIDT is FALSE and LENGT is TRUE, causing
the assembler to form the instructions that make
the page width 80 columns and the length contin-
uous. The only form not shown is where the page
length is 66 lines.

Examples of some of the other forms listed
in Table 7-1 appear later in the text. When one of
these new conditional statements appears it is €x-
plained and shown with an example.

EXAMPLE 7-10(a)

;source program

TRUE

TABLE 7-1 Conditional assembly language IF
statements.
Statement Function
IF If the expression is true
IFB If argument is blank
IFE If the expression is not true
IFDEF If the label has been defined
IFNB If argument is not blank
IFNDEF If the label has not been defined
IFIDN if argument 1 equals argument 2
IFDIF If argument 1 does not equal argument 2

;set to true if 72 columns

;set to true if continuous

EQU 1 ;define true
FALSE EQU O ;define false
WIDT EQU FALSE
;and false if 80 columns
LENGT EQU TRUE
;and false if 66 lines
IF WIDT ;72 columns
WIDE DB 72
ELSE
WIDE DB 80 ;80 columns
ENDIF
IF LENGT ;if continuous
LONG DB -1
ELSE
LONG DB 66 ;1f 66 lines
ENDIF

EXAMPLE 7-10(b)

;assembled portion with WIDT

IF

DB
ELSE
ENDIF

WIDT

0000 48 WIDE 72

IF
DB
ELSE
ENDIF

LENGT

0001 FF LONG -1

EXAMPLE 7-10(c)

;assembled portion with WIDT

;

IF WIDT

TRUE and LENGT = TRUE
;72 columns

;if continuous

FALSE and LENGT = TRUE

;72 columns

7-1 MODULAR PROGRAMMING

ELSE
WIDE DB 80
ENDIF
iF LENGT
LONG DB -1
ELSE
ENDIF

0000 50

0001 FF

Using Conditional Statements in Macros

185

;80 columns

;1f continuous

Macro sequences contain their own set of conditional instructions that differ somewhat from the ones used with
the assembler, as presented in Chapter 6. For example, macros can use REPEAT and WHILE, but they do so
without the period in front of the keywords REPEAT and WHILE. The REPEAT has no corresponding UNTIL,

and the WHILE statement has no corresponding ENDW when used in a
macro. These statements are available to all versions of the assembler.
Table 7-2 lists the relational operators used with WHILE and
REPEAT. These operators are also used with any of the statements
listed in Table 7-1. Note that these are different from the operators

TABLE 7-2 Relational operators
used with WHILE and REPEAT in
macro sequences.

specified in Table 6-3 for the .WHILE and .REPEAT statements. Operator Function
REPEAT Statement in a Macro. The REPEAT statement has a EQ Equal
parameter associated with it to repeat the macro sequence a fixed NE Not equal
number of times. As with any macro sequence, the repeat sequence must LE Less than or equal
end with the ENDM statement. The repeat sequence inserts the LT Less than
instructions that appear between the REPEAT statement and the ENDM GE Greater than or equal
statement into the program the number of times indicated with the GT Greater than
REPEAT statement. NOT Logical inversion

Example 7-11 shows a macro called TESTS and its callng ~ AND Logical AND
program, which sends the 10 ASCII characters from O through 9 to the ~ OR Logical OR

XOR Logical exclusive-OR

video screen. Notice how this macro is formed by using the MACRO
statement to name the macro TESTS, and how the REPEAT statement
appears within macro TESTS with its own ENDM statement. Notice
that the macro starts by placing a 6 into AH and the ASCII code for a 0 in DL. This sets up the DOS INT 21H func-
tion call, so a 0 is displayed on the video screen. Next, the REPEAT statement appears (note that it does not con-
tain a period, as in .REPEAT). This is a different REPEAT statement, used only in macro sequences and available
to all versions of MASM.

The repeated statements in this example are INT 21H, which display the ASCII contents of DL and INC DL,
which modifies the ASCII code displayed. In this case, the REPEAT 10 causes the statements between REPEAT
10 and the first ENDM to be repeated 10 times, as illustrated. Note that the 1 and 2 to the left of the instructions are
listed to show that these statements are assembler-generated and not entered as part of the source program.

EXAMPLE 7-11

TESTS MACRO
MOV AH, 6
MOV DL, 0’

REPEAT 10
INT 21H
INC DL

ENDM

ENDM

; iincrement to next number

0000 MAIN PROC FAR

186 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

TESTS ;display 0 through 9

0000 B4 06 1 MOV AH,6
0002 B2 30 1 MOV DL,’0’
0004 CD 21 2 INT 21H
0006 FE C2 2 INC DL
0008 CD 21 2 INT 21H
000A FE C2 2 INC DL
000C CD 21 2 INT 21H
000E FE C2 2 INC DL
0010 CD 21 2 INT 21H
0012 FE C2 2 INC DL
0014 CD 21 2 INT 21H
0016 FE C2 2 INC DL
0018 CD 21 2 INT 21H
001A FE C2 2 INC DL
001C CD 21 2 INT 21H
001E FE C2 »- 2 INC DL
0020 CD 2} 2., INT 21H
0022 FE,€2 ' 2. INC DL
0024 D' 21 2 INT 21H
0026 FE C2 2 INC DL
0028~ Cp 21 2 INT 21H
002A°FE C2 2 INC DL

N .EXIT
0031 " _ . .. 'MpIN ENDP

- . L4

WHILE Statement in 3 Macro. The WHILE statement appears in macro sequences in much the same way as
REPEAT appears. That is, the while loop is terminated with the ENDM statement. The expression associated with
WHILE determines how many times the loop is repeated. The WHILE statement is available to all versions of
MASM.

Example 7-12 shows how the WHILE statement is used to generate a table of squares from 2 squared to
whatever value fits into an array of byte-sized memory called SQUARE. The first statement of the sequence de-
fines the label SQUARE for the first byte of data generated. The WHILE RES LT 255 repeats the calculation
(SEED*SEED), while the result is less than or equal to 255. Notice that the table generated contains the square of
the numbers from 2 to 15, or 225 (E1H). If you look closely at Example 7-12, the value of the SEED + 1 and
SEED*SEED shows the number and its square.)

EXAMPLE 7-12
;table of byte-sized squares
0000 SQUARE LABEL BYTE ; ;define label
= 0001 SEED = 1
= 0001 RES = SEED*SEED ; ;compute square
WHILE RES LT 255
DB RES
SEED = SEED+1
RES = SEED*SEED
ENDM
0000 01 1 DB RES
= 0002 1 SEED = SEED+1
= 0004 1 RES = SEED*SEED
0001 04 1 DB RES
= 0003 1 SEED = SEED+1
= 0009 1 RES = SEED*SEED
0002 09 1 DB RES
= 0004 1 SEED = SEED+1

7-1 MODULAR PROGRAMMING 187

= 0010 1 RES = SEED*SEED
0003 10 1 DB RES

= 0005 1 SEED = SEED+1

= 0019 1 RES = SEED*SEED
0004 19 1 DB RES
= 0006 1 SEED = SEED+1

= 0024 1 RES = SEED*SEED
0005 24 1 DB RES

= 0007 1 SEED = SEED+1

= 0031 1 RES = SEED*SEED
0006 31 1 DB RES

= 0008 1 SEED = SEED+1

= 0040 1 RES = SEED*SEED
0007 40 1 DB RES

= 0009 1 SEED = SEED+1

= 0051 1 RES = SEED*SEED
0008 51 1 DB RES

= 000A 1 SEED = SEED+1

= 0064 1 RES = SEED*SEED
0009 64 1 DB RES

= 000B 1 SEED = SEED+1

= 0079 1 RES = SEED*SEED
000a 79 1 DB RES

= 000C 1 SEED = SEED+1

= 0090 1 RES = SEED*SEED
000B 90 1 DB RES

= 000D 1 SEED = SEED+1

= 00A9 1 RES = SEED*SEED
000C A9 1 DB RES

= 000E 1 SEED = SEED+1

= 00C4 1 RES = SEED*SEED
000D c4 1 DB RES

= 000F 1 SEED = SEED+1

= 00E1 1 RES = SEED*SEED

FOR Statement in a Macro. The FOR statement iterates a list of data. If you are familiar with BASIC, the FOR
statement functions like the READ statement, and the list of data associated with it functions like the DATA state-
ment. Example 7-13 shows how the FOR statement is used to display a series of characters on the video display.
Notice that the CHR:VARARG indicates the variable name CHR that is of variable size (VARARG). The first use
of DISP generates the code required to display BARRY. The second use of the DISP macro generates the code re-
quired to display BREY. The FOR statement counts the variable used after display and repeats the commands be-
tween FOR and ENDM for each variable; in this case, each ASCII character.

EXAMPLE 7-13
DISP MACRO CHR:VARARG
MOV AH,2
FOR ARG, <CHR>
MOV DL, ARG
INT 21H
ENDM
ENDM
DISP 'B’,’'A’,'R’,‘R‘,'Y’,’ *
0000 B4 02 1 MOV AH,2
0002 B2 42 2 MOV DL, ‘B’
0004 cCD 21 2 INT 21H
0006 B2 41 2 MOV DL, ‘A’
0008 cD 21 2 INT 21H

188 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

000Aa B2 52 2 MOV DL, 'R’
000C CD 21 2 INT 21H
000E B2 52 2 MOV DL, 'R’
0010 CD 21 2 INT 21H
0012 B2 59 2 MOV DL, 'Y’
0014 CD 21 2 INT 21H
0016 B2 20 2 MOV DL, '’
0018 CD 21 2 INT 21H
DISP 'B’,'R’,'E’,'Y’
001A B4 02 1 MOV AH,2
001C B2 42 2 MOV DL, 'B’
001E CD 21 2 INT 21H
0020 B2 52 2 MOV DL, ‘R’
0022 CD 21 2 INT 21H
0024 B2 45 2 MOV DL, 'E’
0026 CD 21 2 INT 21H
0028 B2 59 2 MOV DL, 'Y’
002A CD 21 2 INT 21H

IF, ELSE, and ENDIF Statements in a Macro. The IF statement is used in a macro to make decisions,
based on the parameters sent to the macro. As before, note that IF is used in a macro and .IF is used in a pro-
gram. The IF statement is available to all versions of the assembler, whereas .IF is available only to version
6.X.

In Example 7-14, a macro is developed that uses a number of conditional assembly statements to read
a key, display a character, or display a carriage return and line feed combination. This example illustrates
the use of IF, IFB, INB, ENDIF, and ELSE. The macro is called I0. If 10 is used on a line by itself, the as-
sembler generates the code to read a key. If IO -1 appears as a statement, the assembler generates the code
required to display a carriage return and line feed. If 10 ‘B’ appears as a statement, the assembler generates
the code required to display the letter B. This example is listed in expanded form, so that the code generated
by the assembler can be viewed and studied. As before, the lines that contain a number between the hexa-
decimal code and the statement in the program are assembler-generated, and are not included in the original
source program.

EXAMPLE 7-14

.MODEL TINY
0000 .CODE
;the IO macro functions in 3 ways

; (1) IO read a key with echo
;(2) 10 -1 display a carriage return & line feed
;(3) 10 'B’ display the letter ‘B’
;or IO AL display contents of AL
10 MACRO CHAR
IFB <CHAR> ;;if CHAR is blank
MOV AH,1 ;;read key function
ENDIF
IFNB <CHAR> ;;if CHAR not blank
MOV AH,2 ; ;display character
IF CHAR EQ -1 ;:if CHAR equals -1
MOV DL, 13 ; ;display return
INT 21H

MOV DL, 10 ; ;display line feed

7-1 MODULAR PROGRAMMING 189

ELSE ;;1f CHAR not -1
MOV DL, CHAR ; ;load CHAR to DL
ENDIF
ENDIF
INT 21H
ENDM
.STARTUP

;This program does a carriage return, line feed then
;displays the letters BE on the video screen. Next it
;waits for a key to be typed. Following the key, a
;carriage return/line feed is displayed.

v

I0 -1 ;return & line feed
0100 B4 02 1 MOV AH,2
0102 B2 0D 1 MOV DL, 13
0104 CD 21 1 INT 21H
0106 B2 0A 1 MOV DL, 10
0108 <CD 21 1 INT 21H
I0 ‘B’ ;display ‘B’
010A B4 02 1 MOV AH,2
010C B2 42 1 MOV DL, ‘B’
010E CD 21 1 INT 21H
10 ‘B’ ;display ‘E’
0110 B4 02 1 MOV AH,2
0112 B2 45 1 MOV DL, 'E’
0114 Cp 21 1 INT 21H
I0 ;read key
0116 B4 01 1 MOV AH,1
0118 CD 21 1 INT 21H
10 -1 ;jreturn & line feed
011A B4 02 1 MOV AH,2
011C B2 0D 1 MOV DL, 13
011E CD 21 1 INT 21H
0120 B2 0A 1 MOV DL, 10
0122 CD 21 1 INT 21H
.EXIT
END

The first part of the macro uses the IFB <CHAR> statement to test CHAR for a blank condition. If
CHAR is blank, the assembler generates the MOV AH, 1 instruction followed by the very last instruction
in the macro, INT 21H, to read a key with echo. This is used in the program with the IO statement.

The second part of the macro contains the IFNB <CHAR> statement to test if CHAR is not blank.
If CHAR is not blank, another IF-ELSE-ENDIF sequence appears to test the contents of CHAR. If
CHAR is a -1, the assembler generates the code required to display a carriage return and line feed com-
bination. If CHAR is not a -1, the ELSE statement places CHAR into DL for display. This very pow-
erful macro can handle most keyboard and single-character display functions. It also illustrates the
power of the conditional assembly statements, when used within a macro.

190 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

The Modular Programming Approach

The modular programming approach often involves a team of people with different programming tasks. This al-
lows the team manager to assign portions of the program to different team members. Often, the team manager de-
velops the system flowchart or shell, and then divides it into modules for team members.

A team member might be assigned the task of developing a macro definition file. This file might contain
macro definitions that handle the 1/O operations for the system. Another team member might be assigned the task
of developing the procedures used for the system. In most cases, the procedures are organized as a library file that
is linked to the program modules. Finally, several program files or modules might be used for the final system,
each developed by different team members.

This approach requires considerable communications between team members and good documentation.
Documentation is the key so that modules interface correctly. Communication among team members plays an es-
sential role in this approach.

7-2 USING THE KEYBOARD AND VIDEO DISPLAY

Today, there are few programs that don’t use the keyboard and video display. This section of the text explains how
to use the keyboard and video display connected to the IBM PC or compatible computer running under MSDOS.

Reading the Keyboard with DOS Functions

The keyboard of the personal computer is read via a DOS function call. A complete listing of the DOS function calls
appears in Appendix A. This section uses INT 21H with various DOS function calls to read the keyboard. Data read
from the keyboard are either in ASCII-coded form or in extended ASCII-coded form.

The ASCII-coded data appear as outlined in Table 1-7 in Section 1-4. The extended character set of Table 1-8 ap-
plies to printed or displayed data only, and not to keyboard data. Notice that the ASCII codes in Table 1-7 correspond to
most of the keys on the keyboard. Also available through the keyboard are extended ASCII-coded keyboard data. Table
7-3 lists most of the extended ASCII codes obtained with various keys and key combinations. Notice that most keys on
the keyboard have alternative key codes. Each function key has four sets of codes selected by the function key alone, the
shift-function key combination, the alternate-function key combination, and the control-function key combination.

There are three ways to read the keyboard. The first method reads a key and echoes (or displays) the key on the
video screen. A second way simply tests to see if a key is pressed. If it is, it reads the key; otherwise it returns without
any key. The third way allows an entire character string or line to be read from the keyboard.

Reading a Key with an Echo. Example 7-15 shows how a key is read from the keyboard and echoed (sent) back out
to the video display by using a procedure called KEY. Although this method is the easiest way to read a key, it is also
the most limited because it always echoes the character to the screen, even if it is an unwanted character. The DOS
function number O1H also responds to the control-C key combination, and exits to DOS if it is typed.

EXAMPLE 7-15

0000 KEY PROC FAR

0000 B4 01 MOV AH,1 ; function 01H

0002 CD 21 INT 21H ;read key

0004 0A CO OR AL,AL ;test for 00H, clear carry
0006 75 03 JNZ KEY1

0008 CD 21 INT 21H ;get extended

000A F9 STC ;indicate extended

000B KEY1:

000B CB RET

000C KEY ENDP

7-2 USING THE KEYBOARD AND VIDEO DISPLAY 191°

TABLE 7-3 The keyboard scanning and extended ASCII codes as returned
from the keyboard.

Extended ASCII code with....

Key ~Scan Code Nothing Shift Control Alternate
Esc 01 01
1 02 78
2 03 03 79
3 04 7A
4 05 7B
5 06 7C
6 07 7D
7 08 7E
8 09 7F
9 0A 80
0] 0B 81
- oC 82
+ oD 83
Bksp OE OE
Tab OF OF 94 A5
Q 10 10
w 11 11
E 12 12
R 13 13
T 14 14
Y 15 15
U 16 16
| 17 17
0] 18 18
P 19 : 19
[1A 1A
] 1B 1B
Enter 1C 1C
Enter 1C A6
Letrl 1D
Rectrl iD
A 1E 1E
S 1F 1F
D 20 20
F 21 21
G 22 22

(continued on next page)

192 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

TABLE 7-3 (continued)

Extended ASCII code with....

Key Scan Code Nothing Shift Control Alternate
H 23 23
J 24 24
K 25 25
L 26 26
; 27 27
‘ 28 28

29 29
Lshft 2A
\ 2B
z 2C 2C
X 2D 2D
C 2E 2E
\ 2F 2F
B 30 30
N 31 31
M 32 32
) 33 33
. 34 34
/ 35 35
Gray / 35 95 A4
Rshft 36
PrtSc EO 2A EO 37
L alt 38
R alt 38
Space 39
Caps 3A
F1 3B 3B 54 5E 68
F2 3C 3C 55 5F 69
F3 3D 3D 56 60 6A
F4 3E 3E 57 61 6B
F5 3F 3F 58 62 6C
F6 40 40 59 63 6D
F7 41 41 5A 64 6E
F8 42 42 5B 65 6F
F9 43 43 5C 66 70
F10 44 44 5D 67 71
F11 57 85 87 89 8B
F12 58 86 88 8A 8C
Num 45
Scroll 46
Home EO 47 47 47 77 97

(continued on next page)

7-2 USING THE KEYBOARD AND VIDEO DISPLAY 193

TABLE 7-3 (continued)

Extended ASCII code with....
Key Scan Code Nothing Shift Control Alternate
Up 48 48 48 8D 98
Pgup EO 49 49 49 84 99
Gray - 4A
Left 4B 4B 4B 73 9B
Center 4C
Right 4D 4D 4D 74 9D
Gray + 4E '
End EO 4F 4F 4F 75 9F
Down EO 50 50 50 91 AO
Pgdn EO 51 51 51 76 A1
Ins EO 52 52 52 92 A2
Del E0 53 53 53 93 A3

Pause E0 1045

To read and echo a character, the AH register is loaded with DOS function number O1H. This is followed by
the INT 21H instruction, which calls a procedure that processes DOS function calls. Upon return from the INT 21H,
the AL register contains the ASCII character typed; the video display also shows the typed character. If AL = 0 after
the return, the INT 21H instruction must again be executed to obtain the extended ASCII-coded character (refer to
Table 7-3). The procedure of Example 7-15 returns with carry set (1) to indicate an extended ASCII character and
carry cleared (0) to indicate a normal ASCII character. When this procedure is called, the CALL instruction might
be followed by a JC EXTENDED to process the extended ASCII character.

Reading a Key without an Echo. The best single character key-reading function is function number O6H. This
function reads a key without an echo to the screen. It also allows extended ASCII characters and does not respond
to the control-C key combination. This function uses AH for the function number (06H) and DL = OFFH to indi-
cate that the function call (INT 21H) will read the keyboard without an echo. I usually use DL = -1 instead of DL
= OFFH because it is easier to type and has the same value (because OFFH = -1).

Example 7-16 shows a procedure that uses function number 06H to read the keyboard. This performs as
shown in Example 7-15, except that no character is echoed to the video display.

EXAMPLE 7-16

000 KEYS PROC FAR

0000 B4 06 MOV AH, 6 ; function 06H

0002 B2 FF MOV DL, OFFH

0004 D 21 INT 21H ;read key

0006 74 F8 JE KEYS ;if no key

0008 OA CO OR AL, AL ;test for 00H, clear carry
000Aa 75 03 JNE KEYS1

000C CD 21 INT 21H ;jget extended

000E F9 STC ;indicate extended
000F KEYS1:

000F CB RET

0010 KEYS ENDP

194 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

If you examine the procedure, there is one other difference. Function call number O6H returns from the INT
21H, even if no key is typed; function call 01H waits for a key to be typed. This is an important difference that should
be noted. This feature allows software to perform other tasks between checking the keyboard for a character.

Read an Entire Line with an Echo. Sometimes, it is advantageous to read an entire line of data with one function call.
Function call number OAH reads an entire line of information—up to 255 characters—from the keyboard. It continues
to acquire keyboard data until either the enter key (ODH) is typed or the character count expires. This function requires
that AH = 0AH, and DS:DX addresses the keyboard buffer (a memory area where the ASCII data are stored). The first
byte of the buffer area must contain the maximum number of keyboard characters read by this function. If the number
typed exceeds this maximum number, the function returns, just as if the enter key were typed. The second byte of the
buffer contains the count of the actual number of characters typed, and the remaining locations in the buffer contain the
ASCII keyboard data.

Example 7-17 shows how this function reads two lines of information into two memory buffers (BUF1 and
BUF2). Before the call to the DOS function through the LINE procedure, the first byte of the buffer is loaded with a
255, so up to 255 characters can be typed. If you assemble and execute this program, the first and second lines are ac-
cepted. The only problem is that the second line appears on top of the first line. The next section of the text explains
how to output characters to the video display to solve this problem.

EXAMPLE 7-17

;A program that reads two lines of data from the keyboard
;using DOS INT 21H function number O0OAH.

;***uses***

;LINE procedure to read a line.

’

.MODEL SMALL ;select SMALL model
0000 .DATA ;start DATA segment
0000 0101 [BUF1 DB 257 DUP (?) ;define BUF1
00
]
0101 0101 [BUF2 DB 257 DUP (?) ;define BUF2
00
]
0000 .CODE ;start CODE segment
. STARTUP ;start program
0017 C6 06 0000 R FF MOV BUF1, 255 ;character count of 255
001C BA 0000 R MOV DX,OFFSET BUF1l ;address BUF1l
001F E8 000F CALL LINE ;read a line
0022 C6 06 0101 R FF MOV BUF2,255 ;character count of 255
0027 BA 0101 R MOV DX,OFFSET BUF2 ;address BUF2
002A E8 0004 CALL LINE ;read a line
EXIT ;exit to DOS
;The LINE procedure uses DOS INT 21H function 0AH to
;read and echo an entire line from the keyboard.
;***parameters***
;DX must contain the data segment offset address of the
;buffer. The first location in the buffer contains the
;number of characters to be read for the line.
;Upon return the second location in the buffer contains
;the line length.
0031 LINE PROC NEAR
0031 B4 0A MOV AH, 0AH ;select function OAH
0033 ¢CD 21 INT 21H ;access DOS
0035 C3 RET ;return from procedure
0036 LINE ENDP

END ;end of file

7-2 USING THE KEYBOARD AND VIDEO DISPLAY 195

Writing to the Video Display with DOS Functions

With most programs, data must be displayed on the video display. Video data are displayed in a number of different ways
with DOS function calls. We use function 02H or 06H for displaying one character at a time, or function 09H for dis-
playing an entire string of characters. Because functions 02H and O6H are identical, we tend to use function 06H because
it is also used to read a key and, as mentioned, does not respond to a control-C key combination.

Displaying One ASCII Character. Both DOS functions 02H and 06H are explained together because they are identical
for displaying ASCII data. Example 7-18 shows how this function displays a carriage return (ODH) and a line feed (OAH).
Here a macro sequence, called DISP (display), displays the carriage return and line feed. The combination of a carriage re-
turn and a line feed moves the cursor to the next line at the left margin of the video screen. This two-step process is used
to correct the problem that occurred between the lines typed through the keyboard in Example 7-17.

EXAMPLE 7-18
;A program that displays a carriage return and a line
;feed using the DISP macro.
.MODEL TINY ;select TINY model
.CODE ;start CODE segment
DISP MACRO A ;:;display A macro
MOV AH, 06H ; ;DOS function 06H
MOV DL,A ; iplace parameter A in DL
INT 21H ; ;display parameter A
ENDM
.STARTUP ;start program
DISP ODH ;display carriage return
0100 B4 06 1 MOV AH, 06H
0102 B2 0D 1 MOV DL, ODH
0104 CD 21 1 INT 21H
DISP OAH ;display line feed
0106 B4 06 1 MOV AH,06H
0108 B2 0A 1 MOV DL, OAH
010A CD 21 1 INT 21H
.EXIT ;exit to DOS
END ;end of file

Displaying a Character String. A character string is a series of ASCII-coded characters that end with a $ (24H)
when used with DOS function call number 09H. Example 7-19 shows how a message is displayed at the current
cursor position on the video display. Function call number 09H requires that DS:DX address the character string
before executing the INT 21H instruction.

EXAMPLE 7-19

.MODEL SMALL ;select SMALL model
0000 .DATA ;start DATA segment
0000 OD OA OA 54 MES DB 13,10,10,’'This is a test line.$’
68 69 73 20
69 73 20 61

20 74 65 73
74 20 6C 69

196 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

6E 65 2E 24

0000 .CODE ;start CODE segment
.STARTUP ;start program

0017 B4 09 MOV AH,9 ;select function 09H

0019 BA 0000 R MOV DX,OFFSET MES ;address character string

001C CD 21 INT 21H ;access DOS
JEXIT ;exit to DOS
END ;end of file

This example program can be entered into the assembler, linked, and executed to produce “This is a test
line” on the video display.

The .EXIT directive embodies the DOS function 4CH. As shown in Appendix A, DOS function 4CH termi-
nates a program. The .EXIT directive inserts a series of two instructions in the program MOV AH,4CH, followed
by an INT 21H instruction.

Using BIOS Video Function Calls

‘In addition to the DOS function call INT 21H, we also have video BIOS (basic /O system)
function calls at INT 10H. The DOS function calls allow a key to be read and a character to be displayed with ease,
but the cursor is difficult to position at the desired screen location. The video BIOS function calls allow more control
over the video display than the DOS function calls do.The video BIOS function calls also require less time to execute
than the DOS function calls do. The DOS function calls do not allow cursor placement, while the video BIOS func-
tion calls do.

Cursor Position. Before any information is placed on the video screen, the position of the cursor should be
known. This allows the screen to be cleared and started at any desired location. Video BIOS function number
03H allows the cursor position to be read from the video interface. Video BIOS function number 02H allows the
cursor to be placed at any screen position. Table 7—4 shows the contents of various registers for both functions
02H and O3H.

The page number in register BH should be 0 before setting the cursor position. Most software does not nor-
mally access the other pages (1-7) of the video display. The page number is often ignored after a cursor read. The
0 page is available in the CGA (color graphics adapter), EGA (enhanced graphics adapter), and VGA (variable
graphics array) text modes of operation.

The cursor position assumes that the left-hand page column is column 0, progressing across a line to column
79. The row number corresponds to the character line number on the screen. Row 0 is the uppermost line, while
row 24 is the last line on the screen. This assumes that the text mode selected for the video adapter is 80 characters
per line by 25 lines. Other text modes are also available, such as 40 x 25 and 96 x 43.

Example 7-20 shows how the video BIOS function call INT 10H is used to clear the video screen. This is
just one method of clearing the screen. Notice that the first function call positions the cursor to row 0 and column
0, which is called the home position. Next, we use the DOS function call to write 2000 (80 characters per line x
25 character lines) blank spaces (20H) on the video display. Finally, the cursor is again moved to the home
position.

TABLE 7-4 Video BIOS function INT 10H.

AH Description Parameters

02H Sets cursor position DH = row, DL = column, and BH = page number
03H Reads cursor position DH = row, DL = column, and BH = page number

7-2 USING THE KEYBOARD AND VIDEO DISPLAY

EXAMPLE 7-20

0000

0100
0102
0104
0107
0109
010C
010E
0110
0110
0112

0114
0116
0118
011B

B4
B7
BA
CD
B9
B4
B2

CD
E2

B4
B7
BA
CD

02
00
0000
10

[N S

[S

;A program that clears the screen and homes the

;jcursor to the upper left-hand corner of the screen.

i

HOME

MAIN1:

.MODEL TINY
.CODE
MACRO

MOV
MOV
MOV
INT

ENDM

AH, 2
BH, 0
DX, 0
10H

.STARTUP

HOME
MOV
MOV
MOV
INT
MOV
MoV
MOV

INT
LOOP
HOME
MOV
MOV
MOV
INT

AH, 2
BH, 0
DX, 0

10H
CX,25*80
AH, 6
DL,

21H
MAIN1

AH, 2
BH, 0
DX, 0
10H

.EXIT

END

;select TINY model

;start CODE segment
; ihome cursor macro
; : function 02H

; ipage 0

;;row 0, line O

; ;home cursor

;start program
;home cursor

;load character count
;select function 06H
;select a space

;display a space
;repeat 2000 times
;home cursor

;exit to DOS
;end of file

197

If this example is assembled, linked, and executed, a problem surfaces. This program is too slow to be useful

in most cases. To correct this situation, another video BIOS function call is used. We can use the scroll function
(06H) to clear the screen at a much higher speed.

Function 06H is used with a 00H in AL to blank the entire screen. This allows Example 7-20 to be rewritten

so that the screen clears at a much higher speed. See Example 7-21 for a faster clear and home cursor program.
Here, function call number O8H reads the character attributes for blanking the screen. Next, they are positioned in
the correct registers and DX is loaded with the screen size, 4FH (79) and 19H (25). If this program is assembled,
linked, executed, and compared with Example 7-20, there is a big difference in the speed at which the screen is
cleared. (Make sure that the lines in the program that are macro expansion ending in a 1 are not typed into the pro-
gram.) Please refer to Appendix A for other video BIOS INT 10H function calls that may prove useful in your ap-
plications. Also listed in Appendix A is a complete listing of all the INT functions available in most computers.

EXAMPLE 7-21

0000

;A program that clears the screen and homes the cursor.

:

.MODEL TINY
.CODE

HOME
MOV
MOV
MOV
INT
ENDM

MACRO
AH, 2
BH, 0
DX, 0
10H

. STARTUP

;select TINY model
;start code segment
; ;home cursor

;start program

198 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

0100 B7 00 MOV BH, 0
0102 B4 08 MOV AH, 8
0104 CD 10 INT 10H
0106 B8A DF MOV BL,BH
0108 8A FC MOV BH, AH
010A B9 0000 MOV CX,0
010D BA 194F MOV DX, 194FH
0110 B8 0600 MOV AX, 600H
0113 CD 10 INT 10H
HOME
0115 B4 02 1 MOV AH, 2
0117 B7 00 1 MOV BH,O0
0119 BA 0000 1 MOV DX,0
011C Cb 10 1 INT 10H
.EXIT
END
Display Macro

;read video attribute
;load page number

;load attributes

;line 25, column 79
;select scroll function
;scroll screen

;home cursor

;exit to DOS
;end program

One of the more usable macro sequences is the one illustrated in Example 7-22. Although it is simple and has been
presented before, it saves much typing when creating programs that must display many individual characters.
What makes this macro so useful is that a register can be specified as the argument, an ASCII character in quotes,

or the numeric value for an ASCII character.

;A program that displays AB followed by a carriage
;return and line feed combination using the DISP macro.

EXAMPLE 7-22
.MODEL TINY
.CODE
DISP MACRO VAR
MOV DL, VAR
MOV AH, 6
INT 21H
ENDM
. STARTUP
DISP ‘A’
0100 B2 41 1 MOV DL, ‘A’
0102 B4 06 1 MOV AH, 6
0104 CD 21 1 INT 21H
0106 BO 42 MOV AL, 'B’
DISP AL
0008 8A DO 1 MOV DL, AL
000A B4 06 1 MOV AH, 6
0ooCc Ccp 21 1 INT 21H
DISP 13
000E B2 0D 1 MOV DL,13
0010 B4 06 1 MOV AH,6
0012 ¢cD 21 1 INT 21H
DISP 10
0014 B2 0OA 1 MOV DL, 10
0016 B4 06 1 MOV AH,6
0018 CD 21 1 INT 21H
.EXIT
END

;select TINY model
;start CODE segment
; ;display VAR macro

;start program
;display 'A’

;load AL with ‘B’
;display ‘B’

;display carriage return

;display line feed

;exit to DOS
;end of file

7-3 DATA CONVERSIONS 199

7-3 DATA CONVERSIONS

In computer systems, data are seldom in the correct form. One main task of the system is to convert data from one
form to another. This section of the chapter describes conversions between binary and ASCIL. Binary data are re-
moved from a register or memory and converted to ASCII for the video display. In many cases, ASCII data are
converted to binary as they are typed on the keyboard. We also explain converting between ASCII and hexadec-
imal data.

Converting from Binary to ASCII

Conversion from binary to ASCII is accomplished in two ways: (1) by the AAM instruction if the number is less
than 100, or (2) by a series of decimal divisions (divide by 10). Both techniques are presented in this section.

The AAM instruction converts the value in AX into a two-digit unpacked BCD number in AX. If the
number in AX is 0062H (98 decimal) before AAM executes, AX contains a 0908H after AAM executes. This is
not ASCII code, but it is converted to ASCII code by adding a 3030H to AX. Example 7-23 illustrates a program
that uses the procedure DISP, which processes the binary value in AL (0-99) and displays it on the video screen as
decimal. The DISP procedure blanks a leading zero, which occurs for the numbers 0-9, with an ASCII space code.
This example program displays the number 74 (test data) on the video screen.

EXAMPLE 7-23

;A program that uses the DISP procedure to display 74
;decimal on the video display.

i

.MODEL TINY ;select TINY mode
0000 " .CODE ;start code segment
. STARTUP ;start program
0100 BO 4A MOV AL, 4AH ;load test data to AL
0102 E8 0004 CALL DISP ;display AL in decimal
.EXIT ;exit to DOS

;The DISP procedure displays AL (0 to 99) as a decimal
;number. AX is destroyed by this procedure.

0109 DISP PROC NEAR

0109 52 PUSH DX ;save DX

010A B4 00 MOV AH, 0 ;jclear AH

010C D4 0A AAM ;convert to BCD

010E 80 C4 20 ADD AH,20H

0111 80 FC 20 CMP AH, 20H ;test for leading zero
0114 74 03 JE DISP1 ;if leading zero

0116 80 C4 10 ADD AH, 10H ;convert to ASCII

0119 DISPl:

0119 8A D4 MOV DL, AH ;jdisplay first digit
011B B4 06 MOV AH, 6

011D 50 PUSH AX

011E CD 21 INT 21H

0120 58 POP AX

0121 8A DO MOV DL, AL

0123 80 C2 30 ADD DL, 30H ;convert second digit to ASCII
0126 CD 21 INT 21H ;display second digit
0128 5aAa POP DX ;restore DX

0129 C3 RET

012a DISP ENDP

END ;end of file

200 CHAPTER7 PROGRAMMING THE MICROPROCESSOR

The reason that AAM converts any number between 0 and 99 to a two-digit unpacked BCD number is be-
cause it divides AX by 10. The result is left in AX so AH contains the quotient and AL the remainder. This same
scheme of dividing by 10 can be expanded to convert any whole number of any number system from binary to an
ASClI-coded character string that can be displayed on the video screen. For example, if AX is divided by 8 instead
of 10, the number is displayed in octal.

The algorithm for converting from binary to ASCII code is:

1. Divide by the 10, then save the remainder on the stack as a significant BCD digit.
2. Repeat step 1 until the quotient is a 0.
3. Retrieve each remainder and add a 30H to convert to ASCII before displaying or printing.

Example 7-24 shows how the unsigned 16-bit content of AX is converted to ASCII and displayed on the
video screen. Here, we divide AX by 10 and save the remainder on the stack after each division for later conver-
sion to ASCIL. After all the digits have been converted, the result is displayed on the video screen by removing the
remainders from the stack and converting them to ASCII code. This procedure (DISPX) also blanks any leading
zeros that occur.

EXAMPLE 7-24
;A program that uses DISPX to display AX in decimal.
.MODEL TINY ;select TINY model
0000 .CODE ;start CODE segment
. STARTUP ;start program
0100 B8 04A3 MOV AX,4A3H ;load AX with test data
0103 E8 0004 CALL DISPX ;display AX in decimal
.EXIT ;exit to DOS
;The DISPX procedure displays AX in decimal.
;AX is destroyed.
010Aa DISPX PROC NEAR
010Aa 52 PUSH DX ;save DX, CX, and BX
010B 51 PUSH CX
010C 53 PUSH BX
010D B9 0000 MOV CX,0 ;clear digit counter
0110 BB 000A MOV BX, 10 ;set for decimal
0113 DISPX1:
0113 BA 0000 MOV DX,0 ;clear DX
0116 F7 F3 DIV BX ;divide DX:AX by 10
0118 52 PUSH DX ;save remainder
0119 41 INC CX ;count remainder
011Aa OB CO OR AX,AX ;test for quotient of zero
011C 75 F5S JNZ DISPX1 ;if quotient is not zero
011E DISPX2:
011E 5A POP DX ;get remainder
011F B4 06 MOV 2AH, 6 ;select function 06H
0121 80 C2 30 ADD DL, 30H ;convert to ASCII
0124 ¢CD 21 INT 21H ;display digit
0126 E2 F6 LOOP DISPX2 ;repeat for all digits
0128 5B POP BX ;restore BX, CX, and DX
0129 59 POP CX
012A 5A POP DX
012B C3 RET
012C DISPX ENDP

END ;end of file

